scholarly journals Spatial Hedonic Analysis to support Tourism-sensitive Tsunami Mitigation Planning

Author(s):  
Yasmin Bhattacharya ◽  
Hitoshi Nakamura
2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Wisyanto Wisyanto

Tsunami which was generated by the 2004 Aceh eartquake has beenhaunting our life. The building damage due to the tsunami could be seenthroughout Meulaboh Coastal Area. Appearing of the physical loss wasclose to our fault. It was caused by the use dan plan of the land withoutconsidering a tsunami disaster threat. Learning from that event, we haveconducted a research on the pattern of damage that caused by the 2004tsunami. Based on the analysis of tsunami hazard intensity and thepattern of building damage, it has been made a landuse planning whichbased on tsunami mitigation for Meulaboh. Tsunami mitigation-based ofMeulaboh landuse planning was made by intergrating some aspects, suchas tsunami protection using pandanus greenbelt, embankment along withhigh plants and also arranging the direction of roads and setting of building forming a rhombus-shaped. The rhombus-shaped of setting of the road and building would reduce the impact of tsunamic wave. It is expected that these all comprehensive landuse planning will minimize potential losses in the future .


2019 ◽  
Vol 11 (4) ◽  
pp. 1235-1249 ◽  
Author(s):  
A. Mentzafou ◽  
A. Conides ◽  
E. Dimitriou

Abstract Coastal ecosystems are linked to socio-economic development, but simultaneously, are particularly vulnerable to anthropogenic climate change and sea level rise (SLR). Within this scope, detailed topographic data resources of Spercheios River and Maliakos Gulf coastal area in Greece, combined with information concerning the economic value of the most important sectors of the area (wetland services, land property, infrastructure, income) were employed, so as to examine the impacts of three SLR scenarios, compiled based on the most recent regional projections reviewed. Based on the results, in the case of 0.3 m, 0.6 m and 1.0 m SLR, the terrestrial zone to be lost was estimated to be 6.2 km2, 18.9 km2 and 31.1 km2, respectively. For each scenario examined, wetlands comprise 68%, 41% and 39% of the total area lost, respectively, reflecting their sensitivity to even small SLR. The total economic impact of SLR was estimated to be 75.4 × 106 €, 161.7 × 106 € and 510.7 × 106 € for each scenario, respectively (3.5%, 7.5% and 23.7% of the gross domestic product of the area), 19%, 17% and 8% of which can be attributed to wetland loss. The consequences of SLR to the ecosystem services provided are indisputable, while adaptation and mitigation planning is required.


2017 ◽  
Vol 25 (2) ◽  
pp. 427-443
Author(s):  
Ramya Rajajagadeesan Aroul ◽  
Mauricio Rodriguez
Keyword(s):  

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 92
Author(s):  
Kwanchai Pakoksung ◽  
Anawat Suppasri ◽  
Fumihiko Imamura

A probabilistic hazard analysis of a tsunami generated by a subaqueous volcanic explosion was performed for Taal Lake in the Philippines. The Taal volcano at Taal Lake is an active volcano on Luzon Island in the Philippines, and its eruption would potentially generate tsunamis in the lake. This study aimed to analyze a probabilistic tsunami hazard of inundated buildings for tsunami mitigation in future scenarios. To determine the probabilistic tsunami hazard, different explosion diameters were used to generate tsunamis of different magnitudes in the TUNAMI-N2 model. The initial water level in the tsunami model was estimated based on the explosion energy. The tsunami-induced inundation from the TUNAMI-N2 model was overlaid on the distribution of buildings. The tsunami hazard analysis of inundated buildings was performed by using the maximum inundation depth in each explosion case. These products were used to calculate the probability of the inundated building given the occurrence of a subaqueous explosion. The results from this study can be used for future tsunami mitigation if a tsunami is generated by a subaqueous volcanic explosion.


Sign in / Sign up

Export Citation Format

Share Document