Compliance contribution tensor of an arbitrarily oriented ellipsoidal inhomogeneity embedded in an orthotropic elastic material

2020 ◽  
Vol 149 ◽  
pp. 103222 ◽  
Author(s):  
Igor Sevostianov ◽  
Volodymyr I. Kushch
Author(s):  
Omid Bahrami Khameslouie ◽  
Mohammad Hossein Soorgee ◽  
Ehsan Ghafarallahi ◽  
Seyed Ebrahim Moussavi Torshizi

2017 ◽  
Vol 56 (2) ◽  
pp. 371-390 ◽  
Author(s):  
Lei Li ◽  
Guodong Zhang ◽  
Kapil Khandelwal

1941 ◽  
Vol 14 (3) ◽  
pp. 580-589 ◽  
Author(s):  
G. Gee ◽  
L. R. G. Treloar

Abstract As high elasticity is a property possessed only by substances of high molecular weight, it is of interest to enquire into the relation between the elastic properties of a highly elastic material such as rubber and its molecular weight. An investigation on these lines has been made possible through the work of Bloomfield and Farmer, who have succeeded in separating natural rubber into fractions having different average molecular weights. The more important physical properties of these fractions have been examined with the object of determining which of the properties are dependent on molecular weight and which are not. Fairly extensive observations were made on the fractions from latex rubber referred to as Nos. 2, 3 and 4 by Bloomfield and Farmer, and some less extensive observations were carried out on the less oxygenated portion of fraction No. 1 obtained from crepe rubber (called hereafter 1b) . Before considering these experimental results, and their relation to the molecular weights of the fractions, it will be necessary to refer briefly to the methods used for the molecular-weight determinations, and to discuss the significance of the figures obtained.


Meccanica ◽  
2021 ◽  
Author(s):  
A. Sapora ◽  
G. Efremidis ◽  
P. Cornetti

AbstractTwo nonlocal approaches are applied to the borehole geometry, herein simply modelled as a circular hole in an infinite elastic medium, subjected to remote biaxial loading and/or internal pressure. The former approach lies within the framework of Gradient Elasticity (GE). Its characteristic is nonlocal in the elastic material behaviour and local in the failure criterion, hence simply related to the stress concentration factor. The latter approach is the Finite Fracture Mechanics (FFM), a well-consolidated model within the framework of brittle fracture. Its characteristic is local in the elastic material behaviour and non-local in the fracture criterion, since crack onset occurs when two (stress and energy) conditions in front of the stress concentration point are simultaneously met. Although the two approaches have a completely different origin, they present some similarities, both involving a characteristic length. Notably, they lead to almost identical critical load predictions as far as the two internal lengths are properly related. A comparison with experimental data available in the literature is also provided.


Sign in / Sign up

Export Citation Format

Share Document