Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery

Author(s):  
Alexandre Lucas ◽  
Stamatios Chondrogiannis
Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 53
Author(s):  
Purna C. Ghimire ◽  
Arjun Bhattarai ◽  
Tuti M. Lim ◽  
Nyunt Wai ◽  
Maria Skyllas-Kazacos ◽  
...  

Progress in renewable energy production has directed interest in advanced developments of energy storage systems. The all-vanadium redox flow battery (VRFB) is one of the attractive technologies for large scale energy storage due to its design versatility and scalability, longevity, good round-trip efficiencies, stable capacity and safety. Despite these advantages, the deployment of the vanadium battery has been limited due to vanadium and cell material costs, as well as supply issues. Improving stack power density can lower the cost per kW power output and therefore, intensive research and development is currently ongoing to improve cell performance by increasing electrode activity, reducing cell resistance, improving membrane selectivity and ionic conductivity, etc. In order to evaluate the cell performance arising from this intensive R&D, numerous physical, electrochemical and chemical techniques are employed, which are mostly carried out ex situ, particularly on cell characterizations. However, this approach is unable to provide in-depth insights into the changes within the cell during operation. Therefore, in situ diagnostic tools have been developed to acquire information relating to the design, operating parameters and cell materials during VRFB operation. This paper reviews in situ diagnostic tools used to realize an in-depth insight into the VRFBs. A systematic review of the previous research in the field is presented with the advantages and limitations of each technique being discussed, along with the recommendations to guide researchers to identify the most appropriate technique for specific investigations.


Batteries ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 20 ◽  
Author(s):  
Md. Akter ◽  
Yifeng Li ◽  
Jie Bao ◽  
Maria Skyllas-Kazacos ◽  
Muhammed Rahman

The battery energy storage system has become an indispensable part of the current electricity network due to the vast integration of renewable energy sources (RESs). This paper proposes an optimal charging method of a vanadium redox flow battery (VRB)-based energy storage system, which ensures the maximum harvesting of the free energy from RESs by maintaining safe operations of the battery. The VRB has a deep discharging capability, long cycle life, and high energy efficiency with no issues of cell-balancing, which make it suitable for large-scale energy storage systems. The proposed approach determines the appropriate charging current and the optimal electrolyte flow rate based on the available time-varying input power. Moreover, the charging current is bounded by the limiting current, which prevents the gassing side-reactions and protects the VRB from overcharging. The proposed optimal charging method is investigated by simulation studies using MATLAB/Simulink.


2011 ◽  
Vol 1 (3) ◽  
pp. 394-400 ◽  
Author(s):  
Liyu Li ◽  
Soowhan Kim ◽  
Wei Wang ◽  
M. Vijayakumar ◽  
Zimin Nie ◽  
...  

2019 ◽  
Author(s):  
Rabiul Islam ◽  
Kwangkook Jeong

Abstract This paper describes the experimental characterization of a laboratory scale single-cell vanadium redox flow battery (VRFB) with variations of operational parameters. The single cell was experimentally investigated with respect to energy storage capacity, charge-discharge time, voltage, coulombic and energy efficiencies under various operating parameters such as current densities, electrolyte flow rates, and the ratio of electrolyte volume in electrolyte storage tank and cell. It was found that the voltage efficiency was increased by 11% entailing energy efficiency improvement from 60 to 66% as the electrolyte flowrate was increased from 40 to 220 ml/min. The highest columbic efficiency was achieved at 96% for the current density of 40 mA/cm2 which was 14% higher than that of the current density of 15 mA/cm2. Energy storage capacity was linearly increased with higher ratio of tank to cell volume due to the larger number of vanadium ions present. The improvement in energy storage capacities was observed to be 60, and 41% as the ratio was raised by 67, and 40%, respectively.


Sign in / Sign up

Export Citation Format

Share Document