scholarly journals Demand response strategy of game between power supply and power consumption under multi-type user mode

Author(s):  
Qing Lu ◽  
Yufeng Zhang
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3658
Author(s):  
Hyeunguk Ahn ◽  
Jingjing Liu ◽  
Donghun Kim ◽  
Rongxin Yin ◽  
Tianzhen Hong ◽  
...  

Although the thermal mass of floors in buildings has been demonstrated to help shift cooling load, there is still a lack of information about how floor covering can influence the floor’s load shifting capability and buildings’ demand flexibility. To fill this gap, we estimated demand flexibility based on the daily peak cooling load reduction for different floor configurations and regions, using EnergyPlus simulations. As a demand response strategy, we used precooling and global temperature adjustment. The result demonstrated an adverse impact of floor covering on the building’s demand flexibility. Specifically, under the same demand response strategy, the daily peak cooling load reductions were up to 20–34% for a concrete floor whereas they were only 17–29% for a carpet-covered concrete floor. This is because floor covering hinders convective coupling between the concrete floor surface and the zone air and reduces radiative heat transfer between the concrete floor surface and the surrounding environment. In hot climates such as Phoenix, floor covering almost negated the concrete floor’s load shifting capability and yielded low demand flexibility as a wood floor, representing low thermal mass. Sensitivity analyses showed that floor covering’s effects can be more profound with a larger carpet-covered area, a greater temperature adjustment depth, or a higher radiant heat gain. With this effect ignored for a given building, its demand flexibility would be overestimated, which could prevent grid operators from obtaining sufficient demand flexibility to maintain a grid. Our findings also imply that for more efficient grid-interactive buildings, a traditional standard for floor design could be modified with increasing renewable penetration.


2021 ◽  
Vol 22 (1) ◽  
pp. 85-100
Author(s):  
Suchitra Dayalan ◽  
Rajarajeswari Rathinam

Abstract Microgrid is an effective means of integrating multiple energy sources of distributed energy to improve the economy, stability and security of the energy systems. A typical microgrid consists of Renewable Energy Source (RES), Controllable Thermal Units (CTU), Energy Storage System (ESS), interruptible and uninterruptible loads. From the perspective of the generation, the microgrid should be operated at the minimum operating cost, whereas from the perspective of demand, the energy cost imposed on the consumer should be minimum. The main key in controlling the relationship of microgrid with the utility grid is managing the demand. An Energy Management System (EMS) is required to have real time control over the demand and the Distributed Energy Resources (DER). Demand Side Management (DSM) assesses the actual demand in the microgrid to integrate different energy resources distributed within the grid. With these motivations towards the operation of a microgrid and also to achieve the objective of minimizing the total expected operating cost, the DER schedules are optimized for meeting the loads. Demand Response (DR) a part of DSM is integrated with MG islanded mode operation by using Time of Use (TOU) and Real Time Pricing (RTP) procedures. Both TOU and RTP are used for shifting the controllable loads. RES is used for generator side cost reduction and load shifting using DR performs the load side control by reducing the peak to average ratio. Four different cases with and without the PV, wind uncertainties and ESS are analyzed with Demand Response and Unitcommittment (DRUC) strategy. The Strawberry (SBY) algorithm is used for obtaining the minimum operating cost and to achieve better energy management of the Microgrid.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3129
Author(s):  
Jewon Oh ◽  
Daisuke Sumiyoshi ◽  
Masatoshi Nishioka ◽  
Hyunbae Kim

The mass introduction of renewable energy is essential to reduce carbon dioxide emissions. We examined an operation method that combines the surplus energy of photovoltaic power generation using demand response (DR), which recognizes the balance between power supply and demand, with an aquifer heat storage system. In the case that predicts the occurrence of DR and performs DR storage and heat dissipation operation, the result was an operation that can suppress daytime power consumption without increasing total power consumption. Case 1-2, which performs nighttime heat storage operation for about 6 h, has become an operation that suppresses daytime power consumption by more than 60%. Furthermore, the increase in total power consumption was suppressed by combining DR heat storage operation. The long night heat storage operation did not use up the heat storage amount. Therefore, it is recommended to the heat storage operation at night as much as possible before DR occurs. In the target area of this study, the underground temperature was 19.1 °C, the room temperature during cooling was about 25 °C and groundwater could be used as the heat source. The aquifer thermal energy storage (ATES) system in this study uses three wells, and consists of a well that pumps groundwater, a heat storage well that stores heat and a well that used heat and then returns it. Care must be taken using such an operation method depending on the layer configuration.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Zhiqing Sun ◽  
Weiguo Si ◽  
Yi Xuan ◽  
Shaojie Luo ◽  
Jian Zhao ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
A. K. Pandey ◽  
R. A. Mishra ◽  
R. K. Nagaria

We proposed footless domino logic buffer circuit. It minimizes redundant switching at the dynamic and the output nodes. The proposed circuit avoids propagation of precharge pulse to the output node and allows the dynamic node which saves power consumption. Simulation is done using 0.18 µm CMOS technology. We have calculated the power consumption, delay, and power delay product of the proposed circuit and compared the results with the existing circuits for different logic function, loading condition, clock frequency, temperature, and power supply. Our proposed circuit reduces power consumption and power delay product as compared to the existing circuits.


Sign in / Sign up

Export Citation Format

Share Document