Fatigue behavior of dissimilar friction stir welded T-lap joints between AA5083 and AA7075

2021 ◽  
Vol 145 ◽  
pp. 106090
Author(s):  
Hao Dinh Duong ◽  
Masakazu Okazaki ◽  
Tra Hung Tran
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2171
Author(s):  
Armin Yousefi ◽  
Ahmad Serjouei ◽  
Reza Hedayati ◽  
Mahdi Bodaghi

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint’s tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1008
Author(s):  
Francesco Musiari ◽  
Fabrizio Moroni

The low quality of adhesion performance on polymeric surfaces has forced the development of specific pretreatments able to toughen the interface between substrate and adhesive. Among these methods, atmospheric pressure plasma treatment (APPT) appears particularly suitable for its environmental compatibility and its effectiveness in altering the chemical state of the surface. In this work, an experimental study on adhesively bonded joints realized using polyamide as substrates and polyurethane as the structural adhesive was carried out with the intent to characterize their fatigue behavior, which represents a key issue of such joints during their working life. The single lap joint (SLJ) geometry was chosen and several surface pretreatments were compared with each other: degreasing, abrasion (alone and followed by APPT) and finally APPT. The results show that the abrasion combined with APPT presents the most promising behavior, which appears consistent with the higher percentage of life spent for crack propagation found by means of DIC on this class of joints with respect to the others. APPT alone confers a good fatigue resistance with respect to the simple abrasion, especially at a low number of cycles to failure.


Author(s):  
E Kara ◽  
A Kurşun ◽  
MR Haboğlu ◽  
HM Enginsoy ◽  
H Aykul

The joining techniques of lightweight and strong materials in the transport industry (e.g. automotive, aerospace, shipbuilding industries) are very important for the safety of the entire structure. In these industries, when compared with other joining methods, the use of adhesively bonded joints presents unique properties such as greater strength, design flexibility, and reduction in fuel consumption, all thanks to low weight. The aim of this study was the analysis of the tensile fatigue behavior of adhesively bonded glass fiber/epoxy laminated composite single-lap joints with three different specimen types including 30, 40 and 50 mm overlap lengths. In this study, composite adherents were manufactured via vacuum-assisted resin transfer molding and were bonded using Loctite 9461 A&B toughened epoxy adhesive. The effect of a surface treatment method on the bonding strength was considered and it led to an increment of about 40%. A numerical analysis based on a finite element model was performed to predict fatigue life curve, and the predicted results showed good agreement with the experimental investigation.


2016 ◽  
Vol 54 (05) ◽  
pp. 351-361 ◽  
Author(s):  
F. GHARAVI ◽  
F. FADAEIFARD ◽  
K. A. MATORI ◽  
R. YUNUS ◽  
N. K. OTHMAN

Author(s):  
Adel Sedaghati ◽  
Hamed Bouzary

In this paper, the effect of water cooling on mechanical properties and microstructure of AA5086 aluminum joints during friction stir welding is investigated. For doing so, the mechanical and microstructural behavior of samples welded both in air and in water was analyzed. Tests were performed involving both butt and lap welds and the results were compared. The effect of rotational speed at constant feed rate of 50 mm/min and changing rotational speed ranging from 250 to 1250 r/min was investigated. The results showed a significant change in the tensile behavior of the butt-welded specimens due to water cooling. In addition, welding was performed at constant spindle speed of 800 r/min and various traverse speeds (25 mm/min to 80 mm/min) to determine the effect of feed rate. The strength increases at first, but then decreases dramatically along with the feed rate which is due to the occurrence of a groove defect. Results showed some generally positive impacts of water cooling which are discussed in terms of tensile results, hardness distributions and microstructure analysis.


2013 ◽  
Vol 564 ◽  
pp. 369-380 ◽  
Author(s):  
H.M. Rao ◽  
J.B. Jordon ◽  
M.E. Barkey ◽  
Y.B. Guo ◽  
Xuming Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document