A dual-scale modelling approach for creep-fatigue crack initiation life prediction of holed structure in a nickel-based superalloy

2022 ◽  
Vol 154 ◽  
pp. 106522
Author(s):  
Kai-Shang Li ◽  
Lv-Yi Cheng ◽  
Yilun Xu ◽  
Run-Zi Wang ◽  
Yong Zhang ◽  
...  
Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 651
Author(s):  
Jianxing Mao ◽  
Zhixing Xiao ◽  
Dianyin Hu ◽  
Xiaojun Guo ◽  
Rongqiao Wang

The creep-fatigue crack growth problem remains challenging since materials exhibit different linear and nonlinear behaviors depending on the environmental and loading conditions. In this paper, we systematically carried out a series of creep-fatigue crack growth experiments to evaluate the influence from temperature, stress ratio, and dwell time for the nickel-based superalloy GH4720Li. A transition from coupled fatigue-dominated fracture to creep-dominated fracture was observed with the increase of dwell time at 600 °C, while only the creep-dominated fracture existed at 700 °C, regardless of the dwell time. A concise binomial crack growth model was constructed on the basis of existing phenomenal models, where the linear terms are included to express the behavior under pure creep loading, and the nonlinear terms were introduced to represent the behavior near the fracture toughness and during the creep-fatigue interaction. Through the model implementation and validation of the proposed model, the correlation coefficient is higher than 0.9 on ten out of twelve sets of experimental data, revealing the accuracy of the proposed model. This work contributes to an enrichment of creep-fatigue crack growth data in the typical nickel-based superalloy at elevated temperatures and could be referable in the modeling for damage tolerance assessment of turbine disks.


Author(s):  
Hyeong-Yeon Lee ◽  
Se-Hwan Lee ◽  
Jong-Bum Kim ◽  
Jae-Han Lee

A structural test and evaluation on creep-fatigue damage, and creep-fatigue crack initiation have been carried out for a Mod. 9Cr-1Mo steel structural specimen with weldments. The conservatisms of the design codes of ASME Section III subsection and NH and RCC-MR codes were quantified at the welded joints of Mod.9Cr-1Mo steel and 316L stainless steel with the observed images from the structural test. In creep damage evaluation using the RCC-MR code, isochronous curve has been used rather than directly using the creep law as the RCC-MR specifies. A y-shaped steel specimen of a diameter 500mm, height 440mm and thickness 6.35mm is subjected to creep-fatigue loads with two hours of a hold time at 600°C and a primary nominal stress of 30MPa. The defect assessment procedures of RCC-MR A16 guide do not provide a procedure for Mod.9Cr-1Mo steel yet. In this study application of σd method for the assessment of creep-fatigue crack initiation has been examined for a Mod. 9Cr-1Mo steel structure.


Sign in / Sign up

Export Citation Format

Share Document