Effect of tenderizers combined with organic acids on Escherichia coli O157:H7 thermal resistance in non-intact beef

2009 ◽  
Vol 133 (1-2) ◽  
pp. 78-85 ◽  
Author(s):  
Yohan Yoon ◽  
Avik Mukherjee ◽  
Keith E. Belk ◽  
John A. Scanga ◽  
Gary C. Smith ◽  
...  
2013 ◽  
Vol 33 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Leighanna M. Massey ◽  
Navam S. Hettiarachchy ◽  
Elizabeth M. Martin ◽  
Steven C. Ricke

1996 ◽  
Vol 59 (3) ◽  
pp. 226-229 ◽  
Author(s):  
D. F. SPLITTSTOESSER ◽  
M. R. MCLELLAN ◽  
J. J. CHUREY

The objective was to determine the effect of cider composition on the heat resistance of Escherichia coli O157:H7. The average D52 value in a model Empire apple juice was 18 min with a z value of 4.8°C. Increasing the Brix from 11.8 to 16.5° had no effect on thermal resistance, while increasing L-malic acid from 0.2 to 0.8%, or reducing the pH from 4.4 to 3.6 sensitized the cells to heat. The greatest effect on heat resistance was afforded by the preservatives benzoic and sorbic acids: D50 values in ciders containing 1,000 mg/l were 5.2 min in the presence of sorbic acid and only 0.64 min in the presence of benzoic acid. Commercial apple juice concentrates yielded lower numbers of survivors than single-strength juices even though their higher sugar concentrations of about 46° Brix increased heat resistance.


1998 ◽  
Vol 61 (5) ◽  
pp. 542-546 ◽  
Author(s):  
LESLYE BRUDZINSKI ◽  
MARK A. HARRISON

The increasing frequency of Escherichia coli O157:H7 outbreaks, especially in acidic foods, raises the concern of an acid tolerance response (ATR). Organic acids can be present in processed and preserved foods: shifts in the acid levels of foods due to these acids may allow E. coli to adapt and later tolerate pH levels that would normally inactivate the organism. The effect of temperature and agitation on the ATRs of three E. coli O157:H7 and two non-O157:H7 isolates were determined. Triggered at pH 5.0, the adaptive System of the ATR allowed for up to nearly 1,000-fold enhanced survival of E. coli O157:H7 cells in some cases compared to survival of nonadapted cells at pH 4.0. E. coli O157:H7 isolates revealed greater acid tolerance responses when incubated statically at 32°C, whereas the non-O157:H7 coli isolates exhibited a greater acid tolerance response with orbital agitation at 25°C. The magnitude of response changed over the incubation period.


1999 ◽  
Vol 62 (5) ◽  
pp. 451-455 ◽  
Author(s):  
JEE-HOON RYU ◽  
YUN DENG ◽  
LARRY R. BEUCHAT

A study was done to determine if various organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted Escherichia coli O157:H7 cells. E. coli O157:H7 strain E0139, isolated from venison jerky, was grown in tryptic soy broth (TSB) and in TSB supplemented with 1% glucose (TSBG) for 18 h at 37°C, then plated on tryptic soy agar (TSA) acidified with malic, citric, lactic, or acetic acid at pH 5.4, 5.1, 4.8, 4.5, 4.2, and 3.9. Regardless of whether cells were grown in TSB or TSBG, visible colonies were not formed when plated on TSA acidified with acetic, lactic, malic, or citric acids at pH values of ≤5.4, ≤4.5, ≤4.2, or ≤4.2, respectively. Cells not adapted to reduced pH did not form colonies on TSA acidified with lactic acid (pH 3.9) or acetic acid (pH 3.9 and 4.2); however, a portion of acid-adapted cells remained viable on TSA containing lactic acid (pH 3.9) or acetic acid (pH 4.2) and could be recovered in TSB. Inactivation of acid-adapted cells was less than that of unadapted cells in TSB acidified at pH 3.9 with citric, lactic, or acetic acid and at pH 3.4 with malic acid. Significantly (P ≤ 0.05) higher numbers of acid-adapted cells, compared with unadapted cells, were detected 12 h after inoculation of TSB acidified with acetic acid at pH 3.9; in TSB containing lactic acid (pH 3.9), the number of acid-adapted cells was higher than the number of unadapted cells after 5 h. In TSB acidified at pH 3.9 with citric acid or pH 3.4 with malic acid, significantly higher numbers of acid-adapted cells survived. This study shows that organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted E. coli O157:H7 cells, and acid-adapted cells are more tolerant than unadapted cells when subsequently exposed to reduced pH caused by these acids.


Sign in / Sign up

Export Citation Format

Share Document