Development of species-specific PCR primers and polyphasic characterization of Lactobacillus sanfranciscensis isolated from Korean sourdough

2015 ◽  
Vol 200 ◽  
pp. 80-86 ◽  
Author(s):  
Hyeongrho Lee ◽  
Hyunwook Baek ◽  
Sae Bom Lim ◽  
Jin Soo Hur ◽  
Sangmin Shim ◽  
...  
2008 ◽  
Vol 74 (6) ◽  
pp. 1740-1747 ◽  
Author(s):  
Andrew Dopheide ◽  
Gavin Lear ◽  
Rebecca Stott ◽  
Gillian Lewis

ABSTRACT Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


2003 ◽  
Vol 69 (11) ◽  
pp. 6380-6385 ◽  
Author(s):  
R. Temmerman ◽  
L. Masco ◽  
T. Vanhoutte ◽  
G. Huys ◽  
J. Swings

ABSTRACT The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a “complete” community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 143-143 ◽  
Author(s):  
M. Cadavid ◽  
J. C. Ángel ◽  
J. I. Victoria

Symptoms of sugarcane orange rust were first observed in July 2010 on sugarcane (interspecific hybrid of Saccharum L. species) cv. CC 01-1884 planted in the La Cabaña Sugar Mill, Puerto Tejada, Colombia. Morphological features of uredinial lesions and urediniospores inspected with an optical microscope and scanning electron microscopy were distinct from common rust of sugarcane caused by Puccinia melanocephala Syd. & P. Syd., revealing spores identical morphologically to those described for the fungus P. kuehnii (Kruger) E. Butler, causal agent of sugarcane orange rust (1,3). Uredinial lesions were orange and distinctly lighter in color than pustules of P. melanocephala. Urediniospores were orange to light cinnamon brown, mostly ovoid to pyriform, variable in size (27.3 to 39.2 × 16.7 to 21.2 μm), with pronounced apical wall and moderately echinulate with spines evenly distributed. Paraphyses, telia, and teliospores were not observed. Species-specific PCR primers designed from the internal transcribed spacer (ITS)1, ITS2, and 5.8S rDNA regions of P. melanocephala and P. kuehnii were used to differentiate the two species (2). The primers Pm1-F and Pm1-R amplified a 480-bp product from P. melanocepahala DNA in leaf samples with symptoms of common rust. By contrast, the primers Pk1-F and Pk1-R generated a 527-bp product from presumed P. kuehnii DNA in leaf samples with signs of orange rust, confirming the identity as P. kuehnii. The Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) started a survey of different cultivars in nurseries and experimental and commercial fields in the Cauca River Valley and collected leaf samples for additional analyses. Experimental cvs. CC 01-1884, CC 01-1866, and CC 01-1305 were found to be highly susceptible to orange rust and were eliminated from regional trials, whereas commercial cvs. CC 85-92 and CC 84-75, the most widely grown cultivars, were resistant. With the discovery of orange rust of sugarcane in Colombia, Cenicaña has incorporated orange rust resistance in the selection and development of new cultivars. To our knowledge, this is the first report of P. kuehnii on sugarcane in Colombia. Orange rust has also been reported from the United States, Cuba, Mexico, Guatemala, Nicaragua, El Salvador, Costa Rica, Panama, Ecuador, and Brazil. References: (1) J. C. Comstock et al. Plant Dis. 92:175, 2008. (2) N. C. Glynn et al. Plant Pathol. 59:703, 2010. (3) E. V. Virtudazo et al. Mycoscience 42:167, 2001.


2010 ◽  
Vol 79 (3) ◽  
pp. 437-442
Author(s):  
Daniel Šperling ◽  
František Čada ◽  
Alois Čížek

The objectives of this study were to establish the prevalence of intestinal Spirochetes of the genusBrachyspirain Czech dogs and to determine the susceptibility of obtainedB. pilosicoliisolates to selected antibacterial substances. Spirochetes were diagnosed microscopically in 23 out of 1139 samples of dogs’ excrements, primarily intended for a parasitological testing. The cultivation of positive samples provided 10 brachyspira isolates, which were, on the basis of their biochemical activity and the results of the species-specific PCR, identified asB. pilosicoli(9 isolates) andB. hyodysenteriae(1 isolate). These dogs came from households. All the 7 tested isolatesB. pilosicoliwere sensitive to metronidazole and doxycycline, uniformly resistant to erythromycin, partly sensitive to cefazoline, lincomicine and ampicilline except for one isolate ofB. pilosicoli, which was resistant to ampicilline. The second part of study was focused on dogs with diarrhoea that came from animal shelters, where a high prevalence of 58% (10/17) ofB. pilosicoliwas found.


2006 ◽  
Vol 74 (8) ◽  
pp. 4519-4529 ◽  
Author(s):  
Kelley M. Hovis ◽  
Martin E. Schriefer ◽  
Sonia Bahlani ◽  
Richard T. Marconi

ABSTRACT It has been demonstrated that Borrelia hermsii, a causative agent of relapsing fever, produces a factor H (FH) and FH-like protein 1 (FHL-1) binding protein. The binding protein has been designated FhbA. To determine if FH/FHL-1 binding is widespread among B. hermsii isolates, a diverse panel of strains was tested for the FH/FHL-1 binding phenotype and FhbA production. Most isolates (23/24) produced FhbA and bound FH/FHL-1. Potential variation in FhbA among isolates was analyzed by DNA sequence analyses. Two genetically distinct FhbA types, designated fhbA1 and fhbA2, were delineated, and type-specific PCR primers were generated to allow for rapid differentiation. Pulsed-field gel electrophoresis and hybridization analyses demonstrated that all isolates that possess the gene carry it on a 200-kb linear plasmid (lp200), whereas isolates that lack the gene lack lp200 and instead carry an lp170. To determine if FhbA is antigenic during infection and to assess the specificity of the response, recombinant FhbA1 (rFhbA1) and rFhbA2 were screened with serum from infected mice and humans. FhbA was found to be expressed and antigenic and to elicit a potentially type-specific FhbA response. To localize the epitopes of FhbA1 and FhbA2, truncations were generated and screened with infection serum. The epitopes were determined to be conformationally defined. Collectively, these analyses indicate that FH/FHL-1 binding is a widespread virulence mechanism for B. hermsii and provide insight into the genetic and antigenic structure of FhbA. The data also have potential implications for understanding the epidemiology of relapsing fever in North America and can be applied to the future development of species-specific diagnostic tools.


Sign in / Sign up

Export Citation Format

Share Document