scholarly journals Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface

2017 ◽  
Vol 243 ◽  
pp. 70-77 ◽  
Author(s):  
Xiang Wang ◽  
Frank Devlieghere ◽  
Annemie Geeraerd ◽  
Mieke Uyttendaele
2015 ◽  
Vol 78 (8) ◽  
pp. 1467-1471 ◽  
Author(s):  
EMEFA ANGELICA MONU ◽  
MALCOND VALLADARES ◽  
DORIS H. D'SOUZA ◽  
P. MICHAEL DAVIDSON

Produce has been associated with a rising number of foodborne illness outbreaks. While much produce is consumed raw, some is treated with mild heat, such as blanching or cooking. The objectives of this research were to compare the thermal inactivation kinetics of Listeria monocytogenes, Salmonella enterica, Shiga toxin–producing Escherichia coli (STEC) O157:H7, and non-O157 STEC in phosphate-buffered saline (PBS; pH 7.2) and a spinach homogenate and to provide an estimate of the safety of mild heat processes for spinach. Five individual strains of S. enterica, L. monocytogenes, STEC O157:H7, and non-O157 STEC were tested in PBS in 2-ml glass vials, and cocktails of the organisms were tested in blended spinach in vacuum-sealed bags. For Listeria and Salmonella at 56 to 60°C, D-values in PBS ranged from 4.42 ± 0.94 to 0.35 ± 0.03 min and 2.11 ± 0.14 to 0.16 ± 0.03 min, respectively. D-values at 54 to 58°C were 5.18 ± 0.21 to 0.53 ± 0.04 min for STEC O157:H7 and 5.01 ± 0.60 to 0.60 ± 0.13 min for non-O157 STEC. In spinach at 56 to 60°C, Listeria D-values were 11.77 ± 2.18 to 1.22 ± 0.12 min and Salmonella D-values were 3.51 ± 0.06 to 0.47 ± 0.06 min. D-values for STEC O157:H7 and non-O157 STEC were 7.21 ± 0.17 to 1.07 ± 0.11 min and 5.57 ± 0.38 to 0.99 ± 0.07 min, respectively, at 56 to 60°C. In spinach, z-values were 4.07 ± 0.16, 4.59 ± 0.26, 4.80 ± 0.92, and 5.22 ± 0.20°C for Listeria, Salmonella, STEC O157:H7, and non-O157 STEC, respectively. Results indicated that a mild thermal treatment of blended spinach at 70°C for less than 1 min would result in a 6-log reduction of all pathogens tested. These findings may assist the food industry in the design of suitable mild thermal processes to ensure food safety.


2016 ◽  
Vol 89 ◽  
pp. 843-849 ◽  
Author(s):  
Xiang Wang ◽  
Mieke Uyttendaele ◽  
Annemie Geeraerd ◽  
Liselot Steen ◽  
Ilse Fraeye ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Taisong Fang ◽  
Yufan Wu ◽  
Yani Xie ◽  
Linjun Sun ◽  
Xiaojie Qin ◽  
...  

This study was carried out to investigate the effects of mild heat, lactic acid, benzalkonium chloride and nisin treatments on the inactivation, sublethal injury, and subsequent growth of Listeria monocytogenes. Results showed that the Bigelow model successfully described the thermal inactivation kinetics, while the Log-linear model with tail consistently offered the most accurate fit to LA, BC, and nisin inactivation curves of cells. Differential plating indicated that percentage of sublethal injury for nisin treated cells was significantly higher than that for the other three treatments. Compared to non-treated cells, significant extension of lag time was observed for all treated cells. The longer exposures to heat treatment contributed to the extended lag time of the survivors. While for LA, BC and nisin treated cells, the longest lag time was not observed at the most severe treatment conditions. The correlation analysis of sublethal injury percentage on the duration of lag time revealed that only heat treatment showed the significant correlation. Overall, the lag time analysis could evaluate a wide range of bacterial injury. Lag time of treated cells was significantly influenced by stress treatments and temperatures of recovery, however, there were not any significant changes in the maximum specific growth rate between treated and non-treated cells under isothermal recovery conditions. The information generated from this study is valuable for utilizing intervention strategies in the elimination or growth inhibition of L. monocytogenes.


Author(s):  
Danae Siderakou ◽  
Evangelia Zilelidou ◽  
Sofia Poimenidou ◽  
Ioanna Tsipra ◽  
Eleni Ouranou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document