Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe

2017 ◽  
Vol 249 ◽  
pp. 53-60 ◽  
Author(s):  
Yunbin Jiang ◽  
Kimberly Sokorai ◽  
Georgios Pyrgiotakis ◽  
Philip Demokritou ◽  
Xihong Li ◽  
...  
2004 ◽  
Vol 67 (8) ◽  
pp. 1630-1633 ◽  
Author(s):  
DEANNA RETZLAFF ◽  
RANDALL PHEBUS ◽  
ABBEY NUTSCH ◽  
JAMES RIEMANN ◽  
CURTIS KASTNER ◽  
...  

A laboratory-scale vertical tower steam pasteurization unit was evaluated to determine the antimicrobial effectiveness of different exposure times (0, 3, 6, 12, and 15 s) and steam chamber temperatures (82.2, 87.8, 93.3, and 98.9°C) against pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua) inoculated onto prerigor beef tissue. Samples were collected and microbiologically analyzed immediately before and after steam treatment to quantify the effectiveness of each time-temperature combination. The 0-s exposure at all chamber temperatures (cold water spray only, no steam treatment) was the experimental control and provided ≤0.3 log CFU/cm2 reductions. Chamber temperatures of 82.2 and 87.8°C were ineffective (P > 0.05) at all exposure times. At 93.3°C, significant reductions (>1.0 log CFU/cm2) were observed at exposure times of ≥6 s, with 15 s providing approximately 1 log cycle greater reductions than 12 s of exposure. The 98.9°C treatment was consistently the most effective, with exposure times of ≥9 s resulting in >3.5 log CFU/cm2 reductions for all pathogens.


2012 ◽  
Vol 75 (9) ◽  
pp. 1611-1618 ◽  
Author(s):  
XUETONG FAN ◽  
KIMBERLY J. B. SOKORAI ◽  
JÜRGEN ENGEMANN ◽  
JOSHUA B. GURTLER ◽  
YANHONG LIU

A novel in-package ozonation device was evaluated for its efficacy in inactivating three microorganisms (viz., Listeria innocua, attenuated Salmonella Typhimurium, and Escherichia coli O157:H7) on tomatoes and for its effect on fruit quality. The device produced ozone inside sealed film bags, reaching a concentration of 1,000 ppm within 1 min of activation. The three bacterial cultures were inoculated onto either the smooth surface or the stem scar areas of the tomatoes, which were then sealed in plastic film bags and subjected to in-package ozonation. L. innocua on tomatoes was reduced to nondetectable levels within 40 s of treatment on the tomato surface, with inactivation of ca. 4 log CFU per fruit on the stem scar area. An increase in treatment time did not result in a proportional increase in bacterial reduction. For E. coli O157:H7 and Salmonella, there was little difference (<1 log) in the effectiveness of the system when comparing surface and scar-inoculated bacteria. Both bacteria were typically reduced by 2 to 3 log CFU per fruit after 2- to 3-min treatments. No negative effects on fruit color or texture were observed during a 22-day posttreatment storage study of ozone-treated tomatoes. These results suggest that the three bacteria responded differently to ozonation and that in-package ozonation may provide an alternative to chemical sanitizers commonly used by the industry.


2009 ◽  
Vol 72 (6) ◽  
pp. 1201-1208 ◽  
Author(s):  
HUA YANG ◽  
PATRICIA A. KENDALL ◽  
LYDIA MEDEIROS ◽  
JOHN N. SOFOS

Solutions of selected household products were tested for their effectiveness against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. Hydrogen peroxide (1.5 and 3%), vinegar (2.5 and 5% acetic acid), baking soda (11, 33, and 50% sodium bicarbonate), household bleach (0.0314, 0.0933, and 0.670% sodium hypochlorite), 5% acetic acid (prepared from glacial acetic acid), and 5% citric acid solutions were tested against the three pathogens individually (five-strain composites of each, 108 CFU/ml) by using a modified AOAC International suspension test at initial temperatures of 25 and 55°C for 1 and 10 min. All bleach solutions (pH 8.36 to 10.14) produced a >5-log reduction of all pathogens tested after 1 min at 25°C, whereas all baking soda solutions (pH 7.32 to 7.55) were ineffective (<1-log reduction) even after 10 min at an initial temperature of 55°C. After 1 min at 25°C, 3% hydrogen peroxide (pH 2.75) achieved a >5-log reduction of both Salmonella Typhimurium and E. coli O157:H7, whereas undiluted vinegar (pH 2.58) had a similar effect only against Salmonella Typhimurium. Compared with 1 min at 25°C, greater reductions of L. monocytogenes (P < 0.05) were obtained with all organic acid and hydrogen peroxide treatments after 10 min at an initial temperature of 55°C. The efficacies of household compounds against all tested pathogens decreased in the following order: 0.0314% sodium hypochlorite > 3% hydrogen peroxide > undiluted vinegar and 5% acetic acid > 5% citric acid > baking soda (50% sodium bicarbonate). The sensitivity of the tested pathogens to all tested household compounds followed the sequence of Salmonella Typhimurium > E. coli O157: H7 > L. monocytogenes.


2019 ◽  
Vol 57 ◽  
pp. 102104 ◽  
Author(s):  
Urvi Shah ◽  
Pietro Ranieri ◽  
Yuyuan Zhou ◽  
Caroline L. Schauer ◽  
Vandana Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document