scholarly journals Performance of cold chains and modeled growth of Vibrio parahaemolyticus for farmed oysters distributed in the United States and internationally

2020 ◽  
Vol 313 ◽  
pp. 108378 ◽  
Author(s):  
David C. Love ◽  
Lillian M. Kuehl ◽  
Robert M. Lane ◽  
Jillian P. Fry ◽  
Jamie Harding ◽  
...  
mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Jaime Martinez-Urtaza ◽  
Ronny van Aerle ◽  
Michel Abanto ◽  
Julie Haendiges ◽  
Robert A. Myers ◽  
...  

ABSTRACT Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming. IMPORTANCE Vibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe. IMPORTANCE Vibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.


1971 ◽  
Vol 34 (9) ◽  
pp. 447-452 ◽  
Author(s):  
R. Nickelson ◽  
C. Vanderzant

This review presents current information on the taxonomic position, biochemical characteristics, distribution, isolation and identification procedures, pathogenicity, and serology of Vibrio parahaemolyticus. In the past, V. parahaemolyticus was associated primarily with outbreaks of gastroenteritis in Japan caused by consumption of seafoods and other salted foods. In recent years, this organism has been isolated from marine environments and seafoods in many countries, including the United States. In addition to gastroenteritis, some strains may cause localized tissue infections in humans and cause death of crab and shrimp. In the United States, V. parahaemolyticus has been incriminated in unconfirmed outbreaks of foodborne illness associated with consumption of shellfish. Isolation procedures based on direct plating of food homogenates on selective media with or without prior enrichment in broth media are available. Suspect colonies are confirmed by biochemical tests and fluorescent antibody technique. Although antisera (7 polyvalent and 47 monovalent) for serological grouping of strains of V. parahaemolyticus are available, their usefulness in diagnostic procedures is at the present uncertain.


2015 ◽  
Vol 2 (2) ◽  
pp. 112
Author(s):  
Marlina

 Vol. 2, No. 2 ABSTRACT A total of 97 V. parahaemolyticus isolate from Padang were examined for their resistance to 15 antibiotics. V. parahaemolyticus isolated behaved as resistant to sulfamethoxazole (100%), rifampin (95%) and tetracycline (75%) and sensitive to norfloxacin (96%). Ampicillin still sensitive for V. parahaemolyticus isolated from human stools. All of isolates were sensitive to namely chloramphenicol and floroquinolones (ciprofloxacin and norfloxacin agents). RAPD-PCR profiling with three primers (OPAR3, OPAR4 and OPAR8) produced four major clusters (R1, R2, R3 and R4), 7 minor clusters (I, II, III, IV, V, VI and VII) and three single isolates.  Keywords: V. parahaemolyticus, MDR, RAPD  1. D. Ottaviani, I. Bacchiocchi, L. Masini, F. Leoni, A. Carraturo, M. Giammarioli, and G. Sbaraglia, Antimicrobial susceptibility of potentially halophilic vibrios isolated from seafood, International Journal of Antimicrobial Agents 18: 135-140, (2001).2. A. Cespedes, and E. Larson, Knowledge, attitude and practices regarding antibiotic use among Latinos in the United States: Review and Recommendations, American Journal of Infection Control 34: 495-502, (2006).3. M. Lesmana, D. Subekti, C.H. Simanjuntak, P. Tjaniadi, J. R. Campbell, and B. A. Ofoyo, Vibrio parahaemolyticus associated with cholera-like diarrhea among patients in North Jakarta, Indonesia, Diagnostic Microbiology and Infectious Disease, 39: 71-75, (2001).4. S. Lu, B. Liu, B. Zhou, And R. E. Levin, Incidence and Enumeration of Vibrio parahaemolyticus in Shellfish from two retail Sources and the Genetic Diversity of isolates as Determined by RAPD-PCR Analysis, Food Biotechnology, 20: 193-209, (2006).5. M. Nishibuchi, Vibrio parahaemolyticus. In International handbook of foodborne pathogens, ed. M.D. Milliots and J. W. Bier, United States: Marcel Dekker, Inc. P, 2004, 237-252.6. L. Poirel, M. R. Martinez, H. Mammeri, A. Liard, and P. Nordmann, Origin of Plasmid-Mediated Quinolone Resistance Determinant QnrA, Antimicrobial Agents and Chemotherapy, 49: 3523-3525, (2005).7. S. Radu, N. Elhadi, Z. Hassan, G. Rusul, S. Lihan, N. Fifadara, Yuherman and E. Purwati, Characterization of Vibrio vulnificus isolated from cockles (Anadara granosa): antimicrobial resistance, plasmid profiles and random amplification            of polymorphic DNA analysis, FEMS Microbiology Letters, 165: 139–143, (1998).8. S. Radu, N. Ahmad, F. H. Ling, and A. Reezal, Prevalence and resistance             to antibiotics for Aeromonas species from retail fish in Malaysia, International of Journal Food Microbiology, 81: 261–266, (2003).9. B. Sarkar, N. R. Chowdhury, G. B. Nair, M. Nishibuchi, S. Yamasaki, Y. Takeda, S. K. Gupta, S. K. Bhattacharya, and Ramamurthy, Molecular characterization of Vibrio parahaemolyticus of similar serovars isolated from sewage and clinical cases of diarrhea in Calcutta, India,   World Journal of Microbiology and Biotechnology, 19: 771-776, (2003). 10. S. Schwarz, and E. Chaslus-Dancla, Use of antimicrobials in veterinary medicine and mechanisms of resistance, Veterinary Residue, 32: 201–225, (2001).11. H. Sörum, and T.M. L’Abèe-Lund,.  Antibiotic resistance in food-related bacteria – a result of interfering with the global web of bacterial genetics, International Journal of Food Microbiology, 78: 43–56, (2002).12. P. Tjaniadi, M. Lesmana, D. Subekti, N. Machpud, S. Komalarini, W. Santoso,     C. H. Simanjuntak, N. Punjabi, J. R. Campbell, W. K. Alexander, H. J. Beecham, A. L. Corwin, and B. A. Oyofo, Antimicrobial Resistance of Bacterial Pathogens Associated with Diarrheal Patients in Indonesia, American Journal   of Tropical Medicine and Hygiene,             68: 666-670, (2003).13. X. Zhao, and D. Drlica, Restricting              the Selection of Antibiotic-Resistant Mutants: A General Strategy Derived     from Fluoroquinolone Studies, Clinical Infectious Diseases, 33: S147-S156, (2001).   


1976 ◽  
Vol 4 (2) ◽  
pp. 175-179
Author(s):  
M M Carruthers ◽  
W J Kabat

Unless laboratories use an inhibitory medium, Vibrio parahaemolyticus will be unrecognizable in fecal specimens. The use of a medium exclusively for vibrio isolation, such as thiosulfate-citrate-bile salts-sucrose agar (TCBS), however, may not be considered economically justified in the United States. The isolation and recognition of V. parahaemolyticus is reported on mannitol salt agar (MS), a medium which is used for fecal specimens here. Eight Kanagawa-positive and two of three Kanagawa-negative strains of V. parahaemolyticus grew as well on MS as on TCBS and better than on a representative enteric medium, Hektoen enteric agar (HE). Twenty-two fecal specimens from 16 noninfected individuals were inoculated with known quantities of V. parahaemolyticus, and recovery of these vibrios was assessed on TCBS, MS, and HE. Recovery of vibrios from MS and TCBS was similar when inoculum size was 10(3) colony-forming units/ml or greater. Recovery of vibrios from mixed culture was distinctly lower on HE. The colonial morphology of V. parahaemolyticus and several other bacteria on MS is illustrated.


2003 ◽  
Vol 69 (3) ◽  
pp. 1521-1526 ◽  
Author(s):  
Angelo DePaola ◽  
Jessica L. Nordstrom ◽  
John C. Bowers ◽  
Joy G. Wells ◽  
David W. Cook

ABSTRACT Recent Vibrio parahaemolyticus outbreaks associated with consumption of raw shellfish in the United States focused attention on the occurrence of this organism in shellfish. From March 1999 through September 2000, paired oyster samples were collected biweekly from two shellfish-growing areas in Mobile Bay, Ala. The presence and densities of V. parahaemolyticus were determined by using DNA probes targeting the thermolabile hemolysin (tlh) and thermostable direct hemolysin (tdh) genes for confirmation of total and pathogenic V. parahaemolyticus, respectively. V. parahaemolyticus was detected in all samples with densities ranging from <10 to 12,000 g−1. Higher V. parahaemolyticus densities were associated with higher water temperatures. Pathogenic strains were detected in 34 (21.8%) of 156 samples by direct plating or enrichment. Forty-six of 6,018 and 31 of 6,992 V. parahaemolyticus isolates from enrichments and direct plates, respectively, hybridized with the tdh probe. There was an apparent inverse relationship between water temperature and the prevalence of pathogenic strains. Pathogenic strains were of diverse serotypes, and 97% produced urease and possessed a tdh-related hemolysin (trh) gene. The O3:K6 serotype associated with pandemic spread and recent outbreaks in the United States was not detected. The efficient screening of numerous isolates by colony lift and DNA probe procedures may account for the higher prevalence of samples with tdh + V. parahaemolyticus than previously reported.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e55726 ◽  
Author(s):  
Jeffrey W. Turner ◽  
Rohinee N. Paranjpye ◽  
Eric D. Landis ◽  
Stanley V. Biryukov ◽  
Narjol González-Escalona ◽  
...  

2002 ◽  
Vol 65 (1) ◽  
pp. 79-87 ◽  
Author(s):  
DAVID W. COOK ◽  
PAUL O'LEARY ◽  
JEFF C. HUNSUCKER ◽  
EDNA M. SLOAN ◽  
JOHN C. BOWERS ◽  
...  

From June 1998 to July 1999, 370 lots of oysters in the shell were sampled at 275 different establishments (71%, restaurants or oyster bars; 27%, retail seafood markets; and 2%, wholesale seafood markets) in coastal and inland markets throughout the United States. The oysters were harvested from the Gulf (49%), Pacific (14%), Mid-Atlantic (18%), and North Atlantic (11%) Coasts of the United States and from Canada (8%). Densities of Vibrio vulnificus and Vibrio parahaemolyticus were determined using a modification of the most probable number (MPN) techniques described in the Food and Drug Administration's Bacteriological Analytical Manual. DNA probes and enzyme immunoassay were used to identify suspect isolates and to determine the presence of the thermostable direct hemolysin gene associated with pathogenicity of V. parahaemolyticus. Densities of both V. vulnificus and V. parahaemolyticus in market oysters from all harvest regions followed a seasonal distribution, with highest densities in the summer. Highest densities of both organisms were observed in oysters harvested from the Gulf Coast, where densities often exceeded 10,000 MPN/g. The majority (78%) of lots harvested in the North Atlantic, Pacific, and Canadian Coasts had V. vulnificus densities below the detectable level of 0.2 MPN/g; none exceeded 100 MPN/g. V. parahaemolyticus densities were greater than those of V. vulnificus in lots from these same areas, with some lots exceeding 1,000 MPN/g for V. parahaemolyticus. Some lots from the Mid-Atlantic states exceeded 10,000 MPN/g for both V. vulnificus and V. parahaemolyticus. Overall, there was a significant correlation between V. vulnificus and V. parahaemolyticus densities (r = 0.72, n = 202, P &lt; 0.0001), but neither density correlated with salinity. Storage time significantly affected the V. vulnificus (10% decrease per day) and V. parahaemolyticus (7% decrease per day) densities in market oysters. The thermostable direct hemolysin gene associated with V. parahaemolyticus virulence was detected in 9 of 3,429 (0.3%) V. parahaemolyticus cultures and in 8 of 198 (4.0%) lots of oysters. These data can be used to estimate the exposure of raw oyster consumers to V. vulnificus and V. parahaemolyticus.


1973 ◽  
Vol 127 (3) ◽  
pp. 237-241 ◽  
Author(s):  
H. Zen-Yoji ◽  
R. A. Le Clair ◽  
K. Ohta ◽  
T. S. Montague

Sign in / Sign up

Export Citation Format

Share Document