Numerical study of CO2 enhanced natural gas recovery and sequestration in shale gas reservoirs

2013 ◽  
Vol 19 ◽  
pp. 406-419 ◽  
Author(s):  
Hai Sun ◽  
Jun Yao ◽  
Sun-hua Gao ◽  
Dong-yan Fan ◽  
Chen-chen Wang ◽  
...  
2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Maxian B. Seales ◽  
Turgay Ertekin ◽  
John Yilin Wang

At the end of 2015 the U.S. held 5.6% or approximately 369 Tcf of worldwide conventional natural gas proved reserves (British Petroleum Company, 2016, “BP Statistical Review of World Energy June 2016,” British Petroleum Co., London). If unconventional gas sources are considered, natural gas reserves rise steeply to 2276 Tcf. Shale gas alone accounts for approximately 750 Tcf of the technically recoverable gas reserves in the U.S. (U.S. Energy Information Administration, 2011, “Review of Emerging Resources: U.S. Shale Gas and Shale Oil plays,” U.S. Department of Energy, Washington, DC). However, this represents only a very small fraction of the gas associated with shale formations and is indicative of current technological limits. This manuscript addresses the question of recovery efficiency/recovery factor (RF) in fractured gas shales. Predictions of gas RF in fractured shale gas reservoirs are presented as a function of operating conditions, non-Darcy flow, gas slippage, proppant crushing, and proppant diagenesis. Recovery factors are simulated using a fully implicit, three-dimensional, two-phase, dual-porosity finite difference model that was developed specifically for this purpose. The results presented in this article provide clear insight into the range of recovery factors one can expect from a fractured shale gas formation, the impact that operation procedures and other phenomena have on these recovery factors, and the efficiency or inefficiency of contemporary shale gas production technology.


2019 ◽  
Vol 34 ◽  
pp. 646-655 ◽  
Author(s):  
Erfan Mohagheghian ◽  
Hassan Hassanzadeh ◽  
Zhangxin Chen

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jie Zhan ◽  
Zhihao Niu ◽  
Mengmeng Li ◽  
Ying Zhang ◽  
Xianlin Ma ◽  
...  

CO2 geological sequestration in shale is a promising method to mitigate global warming caused by greenhouse gas emissions as well as to enhance the gas recovery to some degree, which effectively addresses the problems related to energy demand and climate change. With the data from the New Albany Shale in the Illinois Basin in the United States, the CMG-GEM simulator is applied to establish a numerical model to evaluate the feasibility of CO2 sequestration in shale gas reservoirs with potential enhanced gas recovery (EGR). To represent the matrix, natural fractures, and hydraulic fractures in shale gas reservoirs, a multicontinua porous medium model will be developed. Darcy’s and Forchheimer’s models and desorption-adsorption models with a mixing rule will be incorporated into the multicontinua numerical model to depict the three-stage flow mechanism, including convective gas flow mainly in fractures, dispersive gas transport in macropores, and CH4-CO2 competitive sorption phenomenon in micropores. With the established shale reservoir model, different CO2 injection schemes (continuous injection vs. pulse injection) for CO2 sequestration in shale gas reservoirs are investigated. Meanwhile, a sensitivity analysis of the reservoir permeability between the hydraulic fractures of production and injection wells is conducted to quantify its influence on reservoir performance. The permeability multipliers are 10, 100, and 1,000 for the sensitivity study. The results indicate that CO2 can be effectively sequestered in shale reservoirs. But the EGR of both injection schemes does not perform well as expected. In the field application, it is necessary to take the efficiency of supplemental energy utilization, the CO2 sequestration ratio, and the effect of injected CO2 on the purity of produced methane into consideration to design an optimal execution plan. The case with a permeability multiplier of 1,000 meets the demand for both CO2 sequestration and EGR, which indicates that a moderate secondary stimulation zone needs to be formed between the primary hydraulic fractures of injection and production wells to facilitate the efficient energy transfer between interwell as well as to prevent CO2 from channeling. To meet the demand for CO2 sequestration in shale gas reservoirs with EGR, advanced and effective fracking is essential.


Sign in / Sign up

Export Citation Format

Share Document