Effects of interfacial velocity boundary condition on turbulent mass transfer at high Schmidt numbers

2007 ◽  
Vol 28 (6) ◽  
pp. 1192-1203 ◽  
Author(s):  
Yosuke Hasegawa ◽  
Nobuhide Kasagi
2012 ◽  
Vol 550-553 ◽  
pp. 2014-2018
Author(s):  
Xiao Lan Zhou ◽  
Cai Xi Liu ◽  
Yu Hong Dong

Electrochemical mass transfer in turbulent flows and binary electrolytes is investigated. The primary objective is to provide information about mass transfer in the near-wall region between a solid boundary and a turbulent fluid flow at different Schmidt numbers. Based on the computational fluid dynamics and electrochemistry theories, a model for turbulent electrodes channel flow is established. The turbulent mass transfer in electrolytic processes has been predicted by the direct numerical simulation method under limiting current and galvanostatic conditions, we investigate mean concentration and the structure of the concentration fluctuating filed for different Schmidt numbers from 0.1 to 100 .The effect of different concentration boundary conditions at the electrodes on the near-wall turbulence statistics is also discussed.


1970 ◽  
Vol 44 (3) ◽  
pp. 589-603 ◽  
Author(s):  
Kamalesh K. Sirkar ◽  
Thomas J. Hanratty

Turbulent mass transfer to a wall at high Schmidt numbers is controlled by the velocity field within the viscous sublayer. Measurements have been obtained of the root-mean-square fluctuating mass transfer coefficient and the frequency spectrum of the fluctuating mass transfer coefficient for a Schmidt number of about 2300. From an order-of-magnitude analysis it is concluded that flow fluctuations in the direction of mean flow have little effect on the mass transfer fluctuations. A comparison of the mass transfer spectrum with the spectrum of the component of the velocity gradient in the transverse direction sz reveals that the high-frequency portion of the sz spectrum is not effective in transferring mass. Approximate relations between the mass transfer spectrum and the sz spectrum are developed for high frequencies and for low frequencies.


AIChE Journal ◽  
1977 ◽  
Vol 23 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Dudley A. Shaw ◽  
Thomas J. Hanratty

1981 ◽  
Vol 46 (7) ◽  
pp. 1566-1576
Author(s):  
František Vašák ◽  
Václav Kolář ◽  
Zdeněk Brož

Theoretical relation derived in the last study for calculation of the mass transfer coefficient in the region of not fully developed concentration profile at high Schmidt numbers has been verified experimentally. This experimental study has been devoted to measurements of the rate of benzoic acid dissolution into aqueous solutions of glycerol from the internal surface of the pipe of circular cross section in the range 933 ⪬ Sc ⪬ 225 000 and 5 000 ⪬ Re ⪬ 50 000. It has been possible to explain on basis of the theoretical model, the differences between the data of various authors and to obtain a unified description of the phenomena.


Sign in / Sign up

Export Citation Format

Share Document