Investigation of the heat transfer coefficient in a transpiration film cooling with chemical reactions

Author(s):  
G. Frank ◽  
M. Pfitzner
Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


Author(s):  
Rui-dong Wang ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Hui-ren Zhu ◽  
Qi-ling Guo ◽  
...  

Heat transfer of the counter-inclined cylindrical and laid-back holes with and without impingement on the turbine vane leading edge model are investigated in this paper. To obtain the film cooling effectiveness and heat transfer coefficient, transient temperature measurement technique on complete surface based on double thermochromic liquid crystals is used in this research. A semi-cylinder model is used to model the vane leading edge which is arranged with two rows of holes. Four test models are measured under four blowing ratios including cylindrical film holes with and without impingement tube structure, laid-back film holes with and without impingement tube structure. This is the second part of a two-part paper, the first part paper GT2018-76061 focuses on film cooling effectiveness and this study will focus on heat transfer. Contours of surface heat transfer coefficient and laterally averaged result are presented in this paper. The result shows that the heat transfer coefficient on the surface of the leading edge is enhanced with the increase of blowing ratio for same structure. The shape of the high heat transfer coefficient region gradually inclines to span-wise direction as the blowing ratio increases. Heat transfer coefficient in the region where the jet core flows through is relatively lower, while in the jet edge region the heat transfer coefficient is relatively higher. Compared with cylindrical hole, laid-back holes give higher heat transfer coefficient. Meanwhile, the introduction of impingement also makes heat transfer coefficient higher compared with cross flow air intake. It is found that the heat transfer of the combination of laid-back hole and impingement tube can be very high under large blowing ratio which should get attention in the design process.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Peter Schreivogel ◽  
Michael Pfitzner

A new approach for steady-state heat transfer measurements is proposed. Temperature distributions are measured at the surface and a defined depth inside the wall to provide boundary conditions for a three-dimensional heat flux calculation. The practical application of the technique is demonstrated by employing a superposition method to measure heat transfer and film cooling effectiveness downstream of two different 0.75D deep narrow trench geometries and cylindrical holes. Compared to the cylindrical holes, both trench geometries lead to an augmentation of the heat transfer coefficient supposedly caused by the highly turbulent attached cooling film emanating from the trenches. Areas of high heat transfer are visible, where recirculation bubbles or large amounts of coolant are expected. Increasing the density ratio from 1.33 to 1.60 led to a slight reduction of the heat transfer coefficient and an increased cooling effectiveness. Both trenches provide a net heat flux reduction (NHFR) superior to that of cylindrical holes, especially at the highest momentum flux ratios.


Author(s):  
Basav Sen ◽  
Donald L. Schmidt ◽  
David G. Bogard

Heat transfer coefficients have been measured for film cooling injection from a single row of holes laterally directed with a compound angle of 60°. Two hole configurations were tested, round holes and holes with a diffusing expansion at the exit. Streamwise directed round holes were also tested as a basis for comparison. All the holes were inclined at 35° with respect to the surface. The density ratio was 1.0, momentum flux ratios ranged from I = 0.16 to 3.9 and mass flux ratios from M = 0.4 to 2.0. Results are presented in terms of hf/h0, the ratio of film cooling heat transfer coefficient to the heat transfer coefficient for the undisturbed turbulent boundary layer at the same location. Results indicate that for the streamwise directed holes, the heat transfer rates are close to the levels that exist without injection. Similarly, at low momentum flux ratio, holes with a large compound angle had little effect on heat transfer rates. But at high momentum flux ratios, holes with a large compound angle had significantly increased heat transfer levels. The results were combined with adiabatic effectiveness results to evaluate the overall performance of the three geometries. It is shown that for evaluation of film cooling performance with compound angle injection, especially at high momentum flux ratios, it is critical to know the heat transfer coefficient, as the adiabatic effectiveness alone does not determine the performance. Compound angle injection at high momentum flux ratios gives higher effectiveness values than streamwise directed holes, but the higher heat transfer levels result in poorer overall performance.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Akira Murata ◽  
Satomi Nishida ◽  
Hiroshi Saito ◽  
Kaoru Iwamoto ◽  
Yoji Okita ◽  
...  

Cooling at the trailing edge of a gas turbine airfoil is one of the most difficult problems because of its thin shape, high thermal load from both surfaces, hard-to-cool geometry of narrow passages, and at the same time demand for structural strength. In this study, the heat transfer coefficient and film cooling effectiveness on the pressure-side cutback surface was measured by a transient infrared thermography method. Four different cutback geometries were examined: two smooth cutback surfaces with constant-width and converging lands (base and diffuser cases) and two roughened cutback surfaces with transverse ribs and spherical dimples. The Reynolds number of the main flow defined by the mean velocity and two times the channel height was 20,000, and the blowing ratio was varied among 0.5, 1.0, 1.5, and 2.0. The experimental results clearly showed spatial variation of the heat transfer coefficient and the film cooling effectiveness on the cutback and land top surfaces. The cutback surface results clearly showed periodically enhanced heat transfer due to the periodical surface geometry of ribs and dimples. Generally, the increase of the blowing ratio increased both the heat transfer coefficient and the film cooling effectiveness. Within the present experimental range, the dimple surface was a favorable cutback-surface geometry because it gave the enhanced heat transfer without deterioration of the high film cooling effectiveness.


Author(s):  
S. Baldauf ◽  
M. Scheurlen ◽  
A. Schulz ◽  
S. Wittig

Heat transfer coefficients and the resulting heat flux reduction due to film cooling on a flat plate downstream a row of cylindrical holes are investigated. Highly resolved two dimensional heat transfer coefficient distributions were measured by means of infrared thermography and carefully corrected for local internal testplate conduction and radiation effects [1]. These locally acquired data are processed to lateral average heat transfer coefficients for a quantitative assessment. A wide range variation of the flow parameters blowing rate and density ratio as well as the geometrical parameters streamwise ejection angle and hole spacing is examined. The effects of these dominating parameters on the heat transfer augmentation from film cooling are discussed and interpreted with the help of highly resolved surface results of effectiveness and heat transfer coefficients presented earlier [2]. A new method of evaluating the heat flux reduction from film cooling is presented. From a combination of the lateral average of both the adiabatic effectiveness and the heat transfer coefficient, the lateral average heat flux reduction is processed according to the new method. The discussion of the total effect of film cooling by means of the heat flux reduction reveals important characteristics and constraints of discrete hole ejection. The complete heat transfer data of all measurements are used as basis for a new correlation of lateral average heat transfer coefficients. This correlation combines the effects of all the dominating parameters. It yields a prediction of the heat transfer coefficient from the ejection position to far downstream, including effects of extreme blowing angles and hole spacing. The new correlation has a modular structure to allow for future inclusion of additional parameters. Together with the correlation of the adiabatic effectiveness it provides an immediate determination of the streamwise heat flux reduction distribution of cylindrical hole film cooling configurations.


1997 ◽  
Vol 119 (2) ◽  
pp. 343-351 ◽  
Author(s):  
V. K. Garg ◽  
R. E. Gaugler

An existing three-dimensional Navier–Stokes code (Arnone et al., 1991), modified to include film cooling considerations (Garg and Gaugler, 1994), has been used to study the effect of coolant velocity and temperature distribution at the hole exit on the heat transfer coefficient on three film-cooled turbine blades, namely, the C3X vane, the VKI rotor, and the ACE rotor. Results are also compared with the experimental data for all the blades. Moreover, Mayle’s transition criterion (1991), Forest’s model for augmentation of leading edge heat transfer due to free-stream turbulence (1977), and Crawford’s model for augmentation of eddy viscosity due to film cooling (Crawford et al., 1980) are used. Use of Mayle’s and Forest’s models is relevant only for the ACE rotor due to the absence of showerhead cooling on this rotor. It is found that, in some cases, the effect of distribution of coolant velocity and temperature at the hole exit can be as much as 60 percent on the heat transfer coefficient at the blade suction surface, and 50 percent at the pressure surface. Also, different effects are observed on the pressure and suction surface depending upon the blade as well as upon the hole shape, conical or cylindrical.


2000 ◽  
Author(s):  
Vijay K. Garg

Abstract The coolant flow characteristics at the hole exits of a film-cooled blade are derived from an earlier analysis where the hole pipes and coolant plenum were also discretized. The blade chosen is the VKI rotor with three staggered rows of shower-head holes. The present analysis applies these flow characteristics at the shower-head hole exits. A multi-block three-dimensional Navier-Stokes code with Wilcox’s k-ω model is used to compute the heat transfer coefficient on the film-cooled turbine blade. A reasonably good comparison with the experimental data as well as with the more complete earlier analysis where the hole pipes and coolant plenum were also gridded is obtained. If the 1/7th power law is assumed for the coolant flow characteristics at the hole exits, considerable differences in the heat transfer coefficient on the blade surface, specially in the leading-edge region, are observed even though the span-averaged values of h match well with the experimental data. This calls for span-resolved experimental data near film-cooling holes on a blade for better validation of the code.


Author(s):  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Jiang-tao Bai ◽  
Du-chun Xu

Film cooling performance of a new shaped hole: waist-shaped slot hole is studied in this paper. Experimental measurement and numerical simulation are carried out to investigate the film cooling character and physics of this new shaped hole. And comparisons between the waist-shaped slot hole and two kinds of console holes are also performed. Both the cooling effectiveness distribution and the heat transfer coefficient distribution of the waist-shaped slot hole are similar with those of the console hole with large divergence angle because of the effect of the waist-shaped slot hole’s structure. The middle constriction structure of the waist-shaped slot hole and the coupled vortices make jets from the waist-shaped slot holes produce higher cooling effectiveness in the midspan region between adjacent holes. And also due to the effect of the middle constriction structure, the heat transfer coefficient of the waist-shaped slot hole is very high in the upstream midspan region. However, the heat transfer coefficient in the downstream midspan region is lower than that in the region near the hole centerline because of the effect of the coupled vortices. The waist-shaped slot holes provide the surface with very good thermal protection, especially in the upstream region. Although the console holes with small exit-entry area ratio provide better thermal protection than the waist-shaped slot holes due to small turbulence intensity, the flow resistance characteristic of the waist-shaped slot hole is much better.


Sign in / Sign up

Export Citation Format

Share Document