An experimental investigation of the air-side performance of crimped spiral fin-and-tube heat exchangers with a small tube diameter

Author(s):  
Thawatchai Keawkamrop ◽  
Lazarus Godson Asirvatham ◽  
Ahmet Selim Dalkılıç ◽  
Ho Seon Ahn ◽  
Omid Mahian ◽  
...  
Author(s):  
N. F. Timerbaev ◽  
A. K. Ali ◽  
Omar Abdulhadi Mustafa Almohamed ◽  
A. R. Koryakin

In this article, a mathematical simulation of a double pipe heat exchanger is carried out, having the longitudinal rectangular fins with the dimension of (2*3*1000) mm, mounted on the outer surface of the inner tube of the heat exchanger. In this paper, the advantage of using of that type of fins and its effect on the effectiveness of the heat exchanger are studied with the help of the computer program. The carried out research allowsmaking the calculation to find the optimum design parameters of heat exchangers. The outer tube diameter is (34.1mm) while the inner tube diameter is (16.05mm). The tubes wall thickness is (1.5mm) and the model length was (1 m). The hot water is flowing through the inner tube in parallel with the cold water that passing the outer tube. The hot and cold water temperature at the inlet is (75°C & 30°C) respectively. The mass flow rate inside the central pipe is (0.1 kg/s) while the annular pipe carrying (0.3 kg/s). In the present work, the program ANSYS Workbench 15.0 was used to find out the results of heat transfer as well as the behavior of liquids inside the heat exchangers.


Author(s):  
S. F. McBean ◽  
A. M. Birk

This paper describes an experimental investigation into the effects of geometrical variations on ejector system performance when the driving nozzle includes delta mixing tabs. Mixing tabs have been shown to provide good mixing performance with comparable back-pressure penalties to other types of enhanced mixing nozzles. The performance parameters of most interest are pumping, mixing, and back-pressure. Geometric parameters studied include standoff distance, mixing-tube diameter, and tab angle. Experimental testing showed significant performance improvements in mixing and pumping with a decrease in tab angle. Maximum mixing was found to occur with tab angles positioned at 120°. Exceptional mixing was also observed with increased standoff. Back-pressure was shown to increase with increasing standoff and decreasing tab angle, but was not affected by mixing-tube diameter. In addition, a zone of recirculation was identified at the entrance to the mixing-tube. This zone is thought to have an influence on ejector performance.


1997 ◽  
Vol 119 (2) ◽  
pp. 348-356 ◽  
Author(s):  
J. L. Hoke ◽  
A. M. Clausing ◽  
T. D. Swofford

An experimental investigation of the air-side convective heat transfer from wire-on-tube heat exchangers is described. The study is motivated by the desire to predict the performance, in a forced flow, of the steel wire-on-tube condensers used in most refrigerators. Previous investigations of wire-on-tube heat exchangers in a forced flow have not been reported in the literature. The many geometrical parameters (wire diameter, tube diameter, wire pitch, tube pitch, etc.), the complex conductive paths in the heat exchanger, and the importance of buoyant forces in a portion of the velocity regime of interest make the study a formidable one. A key to the successful correlation of the experimental results is a definition of the convective heat transfer coefficient, hw, that accounts for the temperature gradients in the wires as well as the vast difference in the two key characteristic lengths—the tube and wire diameters. Although this definition results in the need to solve a transcendental equation in order to obtain hw from the experimental data, the use of the resulting empirical correlation is straightforward. The complex influence of the mixed convection regime on the heat transfer from wire-on-tube heat exchangers is shown, as well as the effects of air velocity and the angle of attack. The study covers a velocity range of 0 to 2 m/s (the Reynolds number based on wire diameter extends to 200) and angles of attack varying from 0 deg (horizontal coils) to ±90 deg. Heat transfer data from seven different wire-on-tube heat exchangers are correlated so that 95 percent of the data below a Richardson number of 0.004, based on the wire diameter, lie within ±16.7 percent of the proposed correlation.


Sign in / Sign up

Export Citation Format

Share Document