Local flow dynamics in the motion of slug bubbles in a flowing mini square channel

Author(s):  
Reza Azadi ◽  
David S. Nobes
2018 ◽  
Vol 858 ◽  
pp. 634-655 ◽  
Author(s):  
Jian Zhou ◽  
Subhas K. Venayagamoorthy

The time-averaged flow dynamics of a suspended cylindrical canopy patch with a bulk diameter of $D$ is investigated using large-eddy simulations (LES). The patch consists of $N_{c}$ constituent solid circular cylinders of height $h$ and diameter $d$, mimicking patchy vegetation suspended in deep water ($H/h\gg 1$, where $H$ is the total flow depth). After validation against published data, LES of a uniform incident flow impinging on the canopy patch was conducted to study the effects of canopy density ($0.16\leqslant \unicode[STIX]{x1D719}=N_{c}(d/D)^{2}\leqslant 1$, by varying $N_{c}$) and bulk aspect ratio ($0.25\leqslant AR=h/D\leqslant 1$, by varying $h$) on the near-wake structure and adjustment of flow pathways. The relationships between patch geometry, local flow bleeding (three-dimensional redistribution of flow entering the patch) and global flow diversion (streamwise redistribution of upstream undisturbed flow) are identified. An increase in either $\unicode[STIX]{x1D719}$ or $AR$ decreases/increases/increases bleeding velocities through the patch surface area along the streamwise/lateral/vertical directions, respectively. However, a volumetric flux budget shows that a larger $AR$ causes a smaller proportion of the flow rate entering the patch to bleed out vertically. The global flow diversion is found to be determined by both the patch geometrical dimensions and the local bleeding which modifies the sizes of the patch-scale near wake. While loss of flow penetrating the patch increases monotonically with increasing $\unicode[STIX]{x1D719}$, its partition into flow diversion around and beneath the patch shows a non-monotonic dependence. The spatial extents of the wake, the flow-diversion dynamics and the bulk drag coefficients of the patch jointly reveal the fundamental differences of flow responses between suspended porous patches and their solid counterparts.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 451 ◽  
Author(s):  
Ehsan Akbari ◽  
Griffin B. Spychalski ◽  
Kaushik K. Rangharajan ◽  
Shaurya Prakash ◽  
Jonathan W. Song

Sprouting angiogenesis—the infiltration and extension of endothelial cells from pre-existing blood vessels—helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm2 applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.


2019 ◽  
Author(s):  
Ehsan Akbari ◽  
Griffin B. Spychalski ◽  
Kaushik K. Rangharajan ◽  
Shaurya Prakash ◽  
Jonathan W. Song

AbstractSprouting angiogenesis, the infiltration and extension of endothelial cells from pre-existing blood vessels, helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ∼3 dyn/cm2 applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ∼1 µm/s average transvascular flow across the endothelial monolayer with bifurcating fluid flow and laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.


2021 ◽  
Author(s):  
Zhibing Yang ◽  
Song Xue ◽  
Ran Hu ◽  
Yi-Feng Chen

<p>A fundamental understanding of water infiltration in unsaturated fractured rocks is important in a range of subsurface hydrological, environmental and engineering applications. We perform an experimental and modeling investigation of the gravity-driven liquid slug flow behavior at fracture intersections. In the experiments, we visualize the flow processes and quantitatively analyze the flow dynamics. We develop a novel computational model that adequately captures the splitting dynamics. This model considers dynamic contact angles and solves temporal evolution of interface motion based on force balance with the quasi-static assumption at each time step. We systematically examine the influence of various physical parameters on the flow splitting behavior, including the widths and inclination angles of channels, and slug lengths. Using the local splitting relationships obtained mechanistically, develop a network model to study infiltration in unsaturated fracture networks. Then, the influence of the local flow dynamics on large-scale flow structures is systematically investigated. We find that an avalanche infiltration mode emerges spontaneously and that the local splitting relationship controls the divergent and convergent flow structures.</p>


2022 ◽  
Vol 81 (1) ◽  
Author(s):  
Nora Koltzer ◽  
Giulia Kommana ◽  
Mauro Cacace ◽  
Maximilian Frick ◽  
Judith Bott ◽  
...  

AbstractKnowledge of groundwater flow is of high relevance for groundwater management or the planning of different subsurface utilizations such as deep geothermal facilities. While numerical models can help to understand the hydrodynamics of the targeted reservoir, their predictive capabilities are limited by the assumptions made in their setup. Among others, the choice of appropriate hydraulic boundary conditions, adopted to represent the regional to local flow dynamics in the simulation run, is of crucial importance for the final modelling result. In this work, we systematically address this problematic in the area of the central part of the Upper Rhine Graben. We quantify how and to which degree different upper boundary conditions and vertical cross-boundary fluid movement influence the calculated deep fluid flow conditions in the area under study. Robust results, which are insensitive to the choice of boundary condition, are: (i) a regional groundwater flow component descending from the graben shoulders to rise at its centre and (ii) the presence of heterogeneous hydraulic potentials at the rift shoulders. Contrarily, results affected by the chosen boundary conditions are: (i) calculated flow velocities, (ii) the absolute position of the upflow axis, and (iii) the evolving local flow dynamics. If, in general, the investigated area is part of a supra-regional flow system—like the central Upper Rhine Graben is part of the entire Upper Rhine Graben—the inflow and outflow across vertical model boundaries need to be considered.


Biorheology ◽  
2008 ◽  
Vol 45 (5) ◽  
pp. 547-561 ◽  
Author(s):  
Nandini Duraiswamy ◽  
Jose M. Cesar ◽  
Richard T. Schoephoerster ◽  
James E. Moore Jr.

2019 ◽  
Author(s):  
Md Monir Hossain ◽  
Anne E. Staples

AbstractLocal flow dynamics play a central role in physiological processes like respiration and nutrient uptake in coral reefs. Despite the importance of corals as hosts to a quarter of all marine life, and the pervasive threats currently facing corals, little is known about the detailed hydrodynamics of branching coral colonies. Here, in order to investigate the effects of the colony branch density and surface roughness on the local flow field, three-dimensional simulations were performed using immersed boundary, large-eddy simulations for four different colony geometries under low and high unidirectional oncoming flow conditions. The first two colonies were from the Pocillopora genus, one with a densely branched geometry, and one with a comparatively loosely branched geometry. The second pair of colony geometries were derived from a scan of a single Montipora capitata colony, one with the verrucae covering the surface intact, and one with the verrucae removed. We found that the mean velocity profiles in the densely branched colony changed substantially in the middle of the colony, becoming significantly reduced at middle heights where flow penetration was poor, while the mean velocity profiles in the loosely branched colony remained similar in character from the front to the back of the colony, with no middle-range velocity deficit appearing at the center of the colony. When comparing the turbulent flow statistics at the surface of the rough and smooth M. capitata colonies, we found higher Reynolds stress components for the smooth colony, indicating higher rates of mixing and transport compared to the rough colony, which must sacrifice mixing and transport efficiency in order to maintain its surface integrity in its natural high-flow environment. These results suggest that the densely branched, roughly patterned corals found in high flow areas may be more resistant not only to breakage, but also to flow penetration.


Author(s):  
F. Louchet ◽  
L.P. Kubin

Investigation of frictional forces -Experimental techniques and working conditions in the high voltage electron microscope have already been described (1). Care has been taken in order to minimize both surface and radiation effects under deformation conditions.Dislocation densities and velocities are measured on the records of the deformation. It can be noticed that mobile dislocation densities can be far below the total dislocation density in the operative system. The local strain-rate can be deduced from these measurements. The local flow stresses are deduced from the curvature radii of the dislocations when the local strain-rate reaches the values of ∿ 10-4 s-1.For a straight screw segment of length L moving by double-kink nucleation between two pinning points, the velocity is :where ΔG(τ) is the activation energy and lc the critical length for double-kink nucleation. The term L/lc takes into account the number of simultaneous attempts for double-kink nucleation on the dislocation line.


Sign in / Sign up

Export Citation Format

Share Document