Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications

2012 ◽  
Vol 37 (18) ◽  
pp. 13880-13886 ◽  
Author(s):  
Chun-Yu Chu ◽  
Jin-Ting Tsai ◽  
Chia-Liang Sun
2017 ◽  
Vol 5 (25) ◽  
pp. 12653-12672 ◽  
Author(s):  
Arie Borenstein ◽  
Ortal Hanna ◽  
Ran Attias ◽  
Shalom Luski ◽  
Thierry Brousse ◽  
...  

Electrochemical capacitors, so-called supercapacitors, play an important role in energy storage and conversion systems.


2014 ◽  
Vol 783-786 ◽  
pp. 1560-1566
Author(s):  
Kenneth Reifsnider ◽  
Fazle Rabbi ◽  
Jeff Baker ◽  
Jon Michael Adkins ◽  
Q. Liu

Many of the advanced composite materials used in aerospace, energy storage and conversion, and electrical devices are multifunctional, i.e., they operate on (or in the presence of) some combination of mechanical, thermal, electrical, chemical, and magnetic fields. Designing composite materials for airplanes, for example, must include not only structural, but also thermal and electrical considerations. Most energy storage and conversion devices are made from advanced composite materials, and they must be designed to interact and sustain their functions in multiple fields, often mechanical, electrical, electrochemical, and thermal. The functional characteristics of such materials are not only controlled by the constituent properties, but are highly dependent on the size, shape, geometry, arrangement, and interfaces between the constituent materials, the extrinsic factors controlled by processing. That is the subject of the present paper. In particular, we will focus on the design of microstructure in heterogeneous materials to manage the dielectric properties and character of such materials.


2021 ◽  
Vol 16 ◽  
Author(s):  
Joice Sophia Ponraj ◽  
Muniraj Vignesh Narayanan ◽  
Ranjith Kumar Dharman ◽  
Valanarasu Santiyagu ◽  
Ramalingam Gopal ◽  
...  

: Increasing energy crisis across the globe requires immediate solutions. Two-dimensional (2D) materials are in great significance because of its application in energy storage and conversion devices but the production process significantly impacts the environment thereby posing a severe problem in the field of pollution control. Green synthesis method provides an eminent way of reduction in pollutants. This article reviews the importance of green synthesis in the energy application sector. The focus of 2D materials like graphene, MoS2, VS2 in energy storage and conversion devices are emphasized based on supporting recent reports. The emerging Li-ion batteries are widely reviewed along with their promising alternatives like Zn, Na, Mg batteries and are featured in detail. The impact of green methods in the energy application field are outlined. Moreover, future outlook in the energy sector is envisioned by proposing an increase in 2D elemental materials research.


Author(s):  
Rouwei Yan ◽  
Biao Xu ◽  
K. P. Annamalai ◽  
Tianlu Chen ◽  
Zhiming Nie ◽  
...  

Background : Renewable energies are in great demand because of the shortage of traditional fossil energy and the associated environmental problems. Ni and Se-based materials are recently studied for energy storage and conversion owing to their reasonable conductivities and enriched redox activities as well as abundance. However, their electrochemical performance is still unsatisfactory for practical applications. Objective: To enhance the capacitance storage of Ni-Se materials via modification of their physiochemical properties with Fe. Methods: A two-step method was carried out to prepare FeNi-Se loaded reduced graphene oxide (FeNi-Se/rGO). In the first step, metal salts and graphene oxide (GO) were mixed under basic condition and autoclaved to obtain hydroxide intermediates. As a second step, selenization process was carried out to acquire FeNi-Se/rGO composites. Results: X-ray diffraction measurements (XRD), nitrogen adsorption at 77K, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out to study the structures, porosities and the morphologies of the composites. Electrochemical measurements revealed that FeNi-Se/rGO notably enhanced capacitance than the NiSe/G composite. This enhanced performance was mainly attributed to the positive synergistic effects of Fe and Ni in the composites, which not only had influence on the conductivity of the composite but also enhanced redox reactions at different current densities. Conclusion: NiFe-Se/rGO nanocomposites were synthesized in a facile way. The samples were characterized physicochemically and electrochemically. NiFeSe/rGO giving much higher capacitance storage than the NiSe/rGO explained that the nanocomposites could be an electrode material for energy storage device applications.


Sign in / Sign up

Export Citation Format

Share Document