Environmental aspects of thermal power equipment operation modes optimization

2017 ◽  
Vol 42 (18) ◽  
pp. 13300-13306 ◽  
Author(s):  
M.M. Sultanov ◽  
A.A. Konstantinov ◽  
M.S. Ivanitckii
2021 ◽  
Vol 5 ◽  
pp. 43-51
Author(s):  
Evgeni Boiko

Development of a proactive life cycle information management and support system for thermal power equipment can reduce costs and risk of equipment operation. Developing this system at the stage of equipment design is crucial for selecting correct technical and engineering solutions for further efficiency and resilience. Business process re-engineering in design and a CAD library of models for a variety of thermal power equipment are major parts of the suggested approach.


Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 78-87
Author(s):  
Edik K. Arakelyan ◽  
◽  
Ivan A. Shcherbatov ◽  

The uncertainty of the source information is used to solve key tasks in an intelligent automated thermal process control system affects the calculation of control actions, the implementation of equipment optimal operating modes and, as a result, leads to degraded reliability. As a rule, this type of information can be qualitative (the use of expert knowledge) or quantitative in nature. In this regard, it is extremely important to reduce the impact of uncertainty. The aim of the study is to identify the types and origins of uncertainty in the source information used by an intelligent automated process control system and to develop approaches to reduce its impact on the reliability of power equipment operation. The approaches used to ensure the specified indicators of reliability, efficiency and environmental friendliness in modern intelligent automated process control systems are based on predictive strategies, according to which the technical condition of equipment and specific degradation processes are predicted. This means that various types of uncertainty can have a significant negative impact. To reduce the influence of uncertainty of the initial information that affects the reliability of power equipment operation, the use of artificial neural networks is proposed. Their application opens the possibility to predict the occurrence of equipment defects and failures based on retrospective data for specified forecast time intervals. A method for reducing the impact of anomalies contained in the source information used in an intelligent process control system for energy facilities is demonstrated. Data omissions and outliers are investigated, the elimination of which reduces the impact of uncertainty and improves the quality of solving key problems in intelligent automated process control systems. Experimental studies were carried out that made it possible to identify the mathematical methods for removing omissions and anomalies in the source information in the best way. Methodological aspects of eliminating various types of uncertainty that exist in managing of power facilities by means of intelligent automated process control systems at the key stages of the power equipment life cycle are described.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Petr Buryan

In this article, we focus on causes of formation of incrustations in fluidised bed boilers that result from combustion of biomass-containing energy-producing raw materials and can significantly limit the efficiency of the respective power equipment operation. We applied laboratory procedures followed for assessment of characteristic eutectics of mixtures of coal ashes, desulphurisation components (dolomite and limestone), and woodchip ashes. Our analysis proved that combustion of these (or similar) raw materials, accompanied by repeated heating and cooling of combustion and flue gas desulphurisation products, leads to the formation of unfavourable incrustations. These incrustations can grow up to several tens of centimetres in size, thereby significantly restricting the power equipment functionality. They arise due to incrust reheating that results in the formation of eutectics, which have lower melting temperatures than that during their first pass through the combustion process. The same holds for desulphuriation components themselves. Formation of these new eutectics can be attributed both to recycling of substances produced during the first pass through the furnace as well as to mixtures formed both from recycled materials and from components initially combusted in the boiler furnace.


Author(s):  
M. M. Sultanov

THE PURPOSE: The article presents the results of the development of a methodology for the design calculation of reliability and changes in the level of reliability of energy systems, taking into account the influence of control actions based on statistical methods of collection, analysis and models of experimental data processing.METHODS: The system analysis and generalization of experimental data on technological failures of the main equipment of thermal power plants were used in the calculation assessment.RESULTS: The objective function of controlling the reliability parameters of the thermal power plant power equipment is proposed. The approbation of the presented objective control function was performed, which showed the adequacy of the results obtained to assess the reliability of the main nodes and elements of the TPP power equipment.CONCLUSION: The results of the conducted studies show that when determining reliability indicators, it is necessary to take into account the actual technical condition of individual elements and resource-determining functional units of thermal power plant power equipment. The results obtained can be used to develop a methodology for evaluating control actions for calculating the output control parameters and a mathematical model for changing the output characteristics of TPP steam turbines in terms of heat and electric energy generation, as well as at the stage of developing design documentation for the creation of structural elements and practical recommendations in order to extend the service life of power equipment generating systems based on digital technologies.


2021 ◽  
Vol 14 (1) ◽  
pp. 40-44
Author(s):  
N. V. Baidakova ◽  
A. V. Afonin ◽  
A. V. Blagochinnov

Deterioration and aging of the technical fleet of thermal power facilities lead to an unpredictable shutdowns of power equipment. Therefore, it is necessary to create a special approach in maintenance and repair programs, taking into account the possibility of predicting the moment of onset of the defect, its development, as well as the time of possible equipment failure. The equipment maintenance system used at the enterprises is based on the collection of retrospective data on defects and failures on the main and auxiliary equipment of the TPP and summarizing statistics on identical or similar equipment samples. Analysis of domestic and foreign methods of maintenance and organization of repair, as well as possibility of their application in modern power engineering is given. In order to create an efficient production asset management system, which addresses the problem of finding a balance between the potential risk of losses associated with both the operation of equipment and the cost of correcting defects, new class systems are now used in the software market, which carry out equipment maintenance based on the forecast. In order to optimize the equipment maintenance system and ensure uninterrupted and reliable operation of the equipment at minimum operating costs, as well as to reduce equipment downtime, unscheduled and emergency operations, it is advisable to use a modern approach to manage both reliability and risk, as well as the cost of asset ownership. This will enable to control the economic efficiency of the use of production assets. The necessity of creation of an algorithm of implementation of repair programs of power equipment base on technical condition for its use in digital power systems is shown. An algorithm is proposed for implementing the repair program of power units of electric power plants, including steam boilers and turbines of thermal power plants, differing by taking into account the technical condition of power equipment, which allows recognizing the defect that has appeared, determining the cause of its occurrence, its evolution and the duration of possible equipment failure. In the developed repair maintenance algorithm, it is proposed to make a transition from statistical empirical assessments of the technical condition of the equipment to objective estimates obtained on the basis of automated technical diagnostics systems and predictive analysis of situations.


Sign in / Sign up

Export Citation Format

Share Document