scholarly journals Formation of Incrustations during the Cocombustion of Biomass in Fluidised Bed Boilers

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Petr Buryan

In this article, we focus on causes of formation of incrustations in fluidised bed boilers that result from combustion of biomass-containing energy-producing raw materials and can significantly limit the efficiency of the respective power equipment operation. We applied laboratory procedures followed for assessment of characteristic eutectics of mixtures of coal ashes, desulphurisation components (dolomite and limestone), and woodchip ashes. Our analysis proved that combustion of these (or similar) raw materials, accompanied by repeated heating and cooling of combustion and flue gas desulphurisation products, leads to the formation of unfavourable incrustations. These incrustations can grow up to several tens of centimetres in size, thereby significantly restricting the power equipment functionality. They arise due to incrust reheating that results in the formation of eutectics, which have lower melting temperatures than that during their first pass through the combustion process. The same holds for desulphuriation components themselves. Formation of these new eutectics can be attributed both to recycling of substances produced during the first pass through the furnace as well as to mixtures formed both from recycled materials and from components initially combusted in the boiler furnace.

2019 ◽  
Vol 16 (3) ◽  
pp. 334-351
Author(s):  
A. S. Mavlyanov ◽  
E. K. Sardarbekova

Introduction. The objective of the research is to study the effect of the complex activation of the alumina raw material on the rheological properties of the ceramic mass. In addition, the authors investigate solutions for the application of optimal coagulation structures based on loams and ash together with plastic certificates.Materials and methods. The authors used the local forest like reserves of clay loams at the BashKarasu, ash fields of the Bishkek Central Heating Centre (BTEC) and plasticizer (sodium naphthenate obtained from alkaline chemical production wastes) as fibrous materials. Moreover, the authors defined technological properties of raw materials within standard laboratory methodology in accordance with current GOSTs.Results. The researchers tested plastic durability on variously prepared masses for the choice of optimal structures. The paper demonstrated the plastic durability of complexly activated compounds comparing with non-activated and mechanically activated compounds. The sensitivity coefficient increased the amount of clay loams by mechanically and complexly activated, which predetermined the possibility of intensifying the process of drying samples based on complexly activated masses.Discussion and conclusions. However, mechanical activation of clay material reduces the period of relaxation and increases the elasticity coefficient of ceramic masses by 1.8–3.4 times, meanwhile decreases elasticity, viscosity and the conventional power during molding, which generally worsens the molding properties of the masses. Сomplex activation of ash-clay material decreases the period of relaxation and provides an increase in elasticity, plasticity of ceramic masses by 46–47%, reduction in viscosity by 1.5–2 times, conventional power on molding by 37–122% in comparison with MA clay loams. Ceramic masses based on spacecraft alumina raw materials belong to the SMT with improved rheological properties; products based on them pass through the mouthpiece for 5–7 seconds.


Alloy Digest ◽  
1975 ◽  
Vol 24 (8) ◽  

Abstract POTOMAC is a general-purpose, low-carbon, chromium-molybdenum-tungsten hot-work steel. It has excellent resistance to shock and heat checking after repeated heating and cooling. Potomac is suitable for hot-work applications involving severe conditions of shock and sudden temperature changes. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, and machining. Filing Code: TS-290. Producer or source: Allegheny Ludlum Corporation.


Author(s):  
Rebeca Jiménez-Rodríguez ◽  
Amalia Morales-Zumaquero

AbstractThis paper analyses the commodity price pass-through along the pricing chain for the global commodity price index and the indices of its main categories (i.e., agricultural raw materials, food and beverages, energy and metals) in the world, advanced and emerging economies. To do so, the study considers country-by-country vector autoregression models and pool the results by taking weighted means for 18 advanced economies and 19 emerging countries, as well as for the world (defined as the sum of advanced and emerging economies). The results show the following: (i) there is evidence in favour of partial pass-through from commodity prices to producer prices, although the evidence for the pass-through to consumer prices is less evident; (ii) the pass-through in the world seems to be led by both advanced and emerging countries for producer prices and only by advanced economies for consumer prices; (iii) higher prices in the four categories (agricultural raw materials only in the short-run) induce significant higher producer prices in almost all cases, with shocks in the prices of energy and metals showing the largest effects; and (iv) energy prices explain the highest variability of producer and consumer prices.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3079
Author(s):  
Beata Jaworska ◽  
Dominika Stańczak ◽  
Joanna Tarańska ◽  
Jerzy Jaworski

The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Mihail Doynov ◽  
Tsvetan Dimitrov ◽  
Maria Kokkori

The synthesis of arsenic-free ceramics from industrial waste is studied. Samples of waste containing siliceous material passed the exploitation leap-guard layer shift reactor whose main oxide is -Al2O3and, with the addition of natural raw materials and pure oxide, arsenic-free ceramics were synthesized with thermal and electrical properties related to the main phase of spinel group minerals; solid solutions were also formed in the process of synthesis. Insulating properties were established by successive heating and cooling of the specimen for six cycles. Electrical insulating properties were established by the method of resistance to arcing. The relative density was determined by hydrostatic method and diffusion lines of molecules at the main phase were characterized by X-ray diffraction analysis. The experimental procedures followed in this study allowed mixing on a molecular level due to the small dimensions of the crystallite which in turn explains the relatively high density.


1984 ◽  
Vol 57 (3) ◽  
pp. 711-719 ◽  
Author(s):  
A. L. Muir ◽  
M. Cruz ◽  
B. A. Martin ◽  
H. Thommasen ◽  
A. Belzberg ◽  
...  

In six normal supine subjects epinephrine infusion produced a greater leukocytosis with smaller changes in heart rate and blood pressure than did norepinephrine or isoproterenol. Upright exercise in those subjects produced a greater leukocytosis than supine exercise at the same work load. To determine the lung's participation in these events, indium-labeled neutrophils (PMN) were given to four of the subjects. We found that 20–25% were retained in the first pass through the lung when compared with technetium-labeled erythrocytes. The number of labeled PMN in the lung gradually decreased and the number in the spleen and the liver increased. Exercise and catecholamine infusion caused an acceleration in the release of labeled cells from the lung, an increase in both labeled and unlabeled cells in the peripheral blood, and an increase in the number of labeled cells in the liver and spleen. This suggests that increased perfusion of low-flow areas in the lung may contribute to the increased leukocytosis seen in association with both exercise and catecholamine infusion.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7037
Author(s):  
Donatas Kriaučiūnas ◽  
Tadas Žvirblis ◽  
Kristina Kilikevičienė ◽  
Artūras Kilikevičius ◽  
Jonas Matijošius ◽  
...  

Biogas has increasingly been used as an alternative to fossil fuels in the world due to a number of factors, including the availability of raw materials, extensive resources, relatively cheap production and sufficient energy efficiency in internal combustion engines. Tightening environmental and renewable energy requirements create excellent prospects for biogas (BG) as a fuel. A study was conducted on a 1.6-L spark ignition (SI) engine (HR16DE), testing simulated biogas with different methane and carbon dioxide contents (100CH4, 80CH4_20CO2, 60CH4_40CO2, and 50CH4_50CO2) as fuel. The rate of heat release (ROHR) was calculated for each fuel. Vibration acceleration time, sound pressure and spectrum characteristics were also analyzed. The results of the study revealed which vibration of the engine correlates with combustion intensity, which is directly related to the main measure of engine energy efficiency—break thermal efficiency (BTE). Increasing vibrations have a negative correlation with carbon monoxide (CO) and hydrocarbon (HC) emissions, but a positive correlation with nitrogen oxide (NOx) emissions. Sound pressure also relates to the combustion process, but, in contrast to vibration, had a negative correlation with BTE and NOx, and a positive correlation with emissions of incomplete combustion products (CO, HC).


Sign in / Sign up

Export Citation Format

Share Document