The importance of OH− transport through anion exchange membrane in microbial electrolysis cells

2018 ◽  
Vol 43 (5) ◽  
pp. 2645-2653 ◽  
Author(s):  
Yaoli Ye ◽  
Bruce E. Logan
2008 ◽  
Vol 58 (4) ◽  
pp. 853-857 ◽  
Author(s):  
Shaoan Cheng ◽  
Bruce E. Logan

Hydrogen gas can be produced from fermentation end products such as acetic acid through the electrohydrogenesis process in microbial electrolysis cells (MECs). In many MEC reactors, precious metal catalysts and expensive cation exchange membranes are often used. Here we examine Co- and FeCo-based alternatives to Pt, and compare the performance of an anion exchange membrane with that of a cation exchange membrane (Nafion™ 117). It is found that these alternative catalysts have 40–80% better performance than uncatalysed surfaces, but they do not equal the performance of Pt based on our electrochemical tests using cyclic voltammetry. It was also found that the anion exchange membrane (AEM) performance was equal to that of cation exchange membrane (CEM) at applied voltages of 600 mV or less in MEC tests, but that it exceeded performance of the CEM at voltages above 600 mV. These results demonstrate choosing catalysts will require both analysis of performance and materials costs, but that performance is improved for producing H2 gas in MECs using AEMs.


2000 ◽  
Vol 49 (4) ◽  
pp. 211-218
Author(s):  
F. Elhannouni ◽  
M. Belhadj ◽  
M. Taky ◽  
A. El Midaoui ◽  
L. Echihabi ◽  
...  

Author(s):  
Dongguo Li ◽  
Andrew R Motz ◽  
Chulsung Bae ◽  
Cy Fujimoto ◽  
Gaoqiang Yang ◽  
...  

Interest in the low-cost production of clean hydrogen is growing. Anion exchange membrane water electrolyzers (AEMWEs) are considered one of the most promising sustainable hydrogen production technologies because of their...


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 718
Author(s):  
Van Men Truong ◽  
Ngoc Bich Duong ◽  
Hsiharng Yang

Gas diffusion layers (GDLs) play a critical role in anion exchange membrane fuel cell (AEMFC) water management. In this work, the effect of GDL thickness on the cell performance of the AEMFC was experimentally investigated. Three GDLs with different thicknesses of 120, 260, and 310 µm (denoted as GDL-120, GDL-260, and GDL-310, respectively) were prepared and tested in a single H2/O2 AEMFC. The experimental results showed that the GDL-260 employed in both anode and cathode electrodes exhibited the best cell performance. There was a small difference in cell performance for GDL-260 and GDL-310, while water flooding was observed in the case of using GDL-120 operated at current densities greater than 1100 mA cm−2. In addition, it was found that the GDL thickness had more sensitivity to the AEMFC performance as used in the anode electrode rather than in the cathode electrode, indicating that water removal at the anode was more challenging than water supply at the cathode. The strategy of water management in the anode should be different from that in the cathode. These findings can provide a further understanding of the role of GDLs in the water management of AEMFCs.


Sign in / Sign up

Export Citation Format

Share Document