Effects of fuel reforming on large-bore low-speed two-stroke dual fuel marine engine combined with EGR and injection strategy

2020 ◽  
Vol 45 (53) ◽  
pp. 29505-29517
Author(s):  
Lei Zhu ◽  
Bolun Li ◽  
Ang Li ◽  
Wenxia Ji ◽  
Yong Qian ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


2021 ◽  
Author(s):  
Long Liu ◽  
Tianyang Dai ◽  
Qian Xiong ◽  
Yuehua Qian ◽  
Bo Liu

Abstract With increasingly stringent emissions limitation of greenhouse gas and atmospheric pollutants for ship, the direct injection of natural gas on the cylinder head with high-pressure injection is an effective method to make a high power output and decrease harmful gas emissions in marine natural gas dual fuel engines. However, the effects on mixing characteristics of high-pressure natural gas underexpanded jet have not been fully understood. Especially, the injection pressure is up to 30 MPa with large injection quantity and critical surrounding gas conditions for the low-speed two-stroke marine engine. Therefore, this research is focused on the flow and mixing process of the natural gas jet with high-pressure injection under the in-cylinder conditions of low-speed two-stroke marine engine. The gas jet penetration, the distribution of velocity and density, the equivalence ratio and air entrainment have been analyzed under different nozzle hole diameters by numerical simulation. The effects of surrounding gas conditions including pressure, temperature and swirl ratio on air entrainment and equivalence ratio distribution were studied in detail. From the numerical simulation, it is found that the mixing characteristics of natural gas jet can be improved under in-cylinder conditions of higher ambient temperature and swirl ratio, which is relevant to the low-speed two-stroke marine engine.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6821
Author(s):  
Ju-Hwan Seol ◽  
Van Chien Pham ◽  
Won-Ju Lee

This paper presents research on the effects of the multiple injection strategies on the combustion and emission characteristics of a two-stroke heavy-duty marine engine at full load. The ANSYS FLUENT simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both single- and double-injection modes to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed good agreement with the measured values reported in the engine’s sea-trial technical reports. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 6.42% and 12.76%, while NO and soot emissions were reduced up to 24.16% and 68%, respectively, in the double-injection mode in comparison with the single-injection mode. However, the double-injection strategy increased the CO2 emission (7.58%) and ISFOC (23.55%) compared to the single-injection. These are negative effects of the double-injection strategy on the engine that the operators need to take into consideration. The results were in line with the literature reviews and would be good material for operators who want to reduce the engine exhaust gas emission in order to meet the stricter IMO emission regulations.


2019 ◽  
Vol 138 ◽  
pp. 105448 ◽  
Author(s):  
Una Trivanovic ◽  
Joel C. Corbin ◽  
Alberto Baldelli ◽  
Weihan Peng ◽  
Jiacheng Yang ◽  
...  

1996 ◽  
Author(s):  
Christopher Tarpley ◽  
Darryll Pines ◽  
Ajay Kothari

Sign in / Sign up

Export Citation Format

Share Document