scholarly journals A numerical study of the influence of pilot fuel injection timing on combustion and emission formation under two-stroke dual-fuel marine engine-like conditions

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122651
Author(s):  
Arash Nemati ◽  
Jiun Cai Ong ◽  
Kar Mun Pang ◽  
Stefan Mayer ◽  
Jens Honoré Walther
Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1396
Author(s):  
Hao Guo ◽  
Song Zhou ◽  
Jiaxuan Zou ◽  
Majed Shreka

The global demand for clean fuels is increasing in order to meet the requirements of the International Maritime Organization (IMO) of 0.5% global Sulphur cap and Tier III emission limits. Natural gas has begun to be popularized on liquefied natural gas (LNG) ships because of its low cost and environment friendly. In large-bore marine engines, ignition with pilot fuel in the prechamber is a good way to reduce combustion variability and extend the lean-burn limit. However, the occurrence of knock limits the increase in power. Therefore, this paper investigates the effect of pilot fuel injection conditions on performance and knocking of a marine 2-stroke low-pressure dual-fuel (LP-DF) engine. The engine simulations were performed under different pilot fuel parameters. The results showed that the average in-cylinder temperature, the average in-cylinder pressure, and the NOx emissions gradually decreased with the delay of the pilot injection timing. Furthermore, the combustion situation gradually deteriorated as the pilot injection duration increased. A shorter pilot injection duration was beneficial to reduce NOx pollutant emissions. Moreover, the number of pilot injector orifices affected the ignition of pilot fuel and the flame propagation speed inside the combustion chamber.


2017 ◽  
Vol 105 ◽  
pp. 4621-4626 ◽  
Author(s):  
Kun Lin Tay ◽  
Wenming Yang ◽  
Siaw Kiang Chou ◽  
Dezhi Zhou ◽  
Jing Li ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 1072
Author(s):  
Van Chien Pham ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Won-Ju Lee ◽  
Jae-Hyuk Choi

A numerical study was carried out to investigate the effects of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), and dimethyl ether (DME) on the combustion and emission characteristics of a four-stroke gas-diesel dual-fuel (DF) marine engine at full load. Three-dimensional simulations of the combustion process and emission formation inside the engine cylinder in the diesel and DF modes were performed using the AVL FIRE R2018a simulation software to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results agreed well with the measured values reported in the engine shop test technical data. The simulation results showed reductions in the in-cylinder peak pressure and temperatures, as well as the emission formations, in the DF modes in comparison to the diesel mode. The DF mode could significantly reduce nitric oxide (NO) emissions (up to 96.225%) of DME compared to the diesel mode. Meanwhile, C3H8 and CH4 fuels effectively reduced the soot (up to 82.78%) and carbon dioxide (CO2) emissions (by 21.33%), respectively, compared to the diesel mode. However, the results also showed longer ignition delay times of the combustion processes when the engine operated in the DF mode, particularly in the DME-diesel mode. The combustion and emission characteristics of the engine were also analyzed when varying the injection timing; the results showed that applying the injection timing adjustment method could further address NO emission problems but led to a decrease in the engine power. Therefore, it is necessary to consider the benefits and disadvantages of adopting the injection timing adjustment strategy to address certain engine emission problems. This study successfully analyzed the benefits of using various gas fuels as alternative fuels and the injection timing adjustment method in DF marine engines to meet the International Maritime Organization (IMO) emission regulations without the use of any emission after-treatment devices.


Sign in / Sign up

Export Citation Format

Share Document