Design of thermo-optic tunable optical filter based on Si/Air DBR and polymer Fabry–Perot microcavity in SOI

Optik ◽  
2014 ◽  
Vol 125 (12) ◽  
pp. 2885-2890 ◽  
Author(s):  
Kui Wu ◽  
Zhe Li ◽  
Jing Guo ◽  
Yongchuan Xiao ◽  
Huajuan Qi ◽  
...  
1990 ◽  
Vol 57 (17) ◽  
pp. 1718-1720 ◽  
Author(s):  
J. S. Patel ◽  
M. A. Saifi ◽  
D. W. Berreman ◽  
Chinlon Lin ◽  
N. Andreadakis ◽  
...  

2012 ◽  
Vol 6-7 ◽  
pp. 194-199
Author(s):  
Zhe Li ◽  
Hua Juan Qi ◽  
Yong Chuan Xiao ◽  
Feng Li Gao

An integrated TOF (Tunable Optical Filter) based on thermo-optic effect in Silicon on insulator (SOI) rib waveguide is designed and simulated. The device is comprised of two high refractivity contrast Si/Air stacks, functioning as high reflectivity of DBRs and separated by a variable refractive index Si F-P cavity. The output characteristics are calculated and simulated based on Transfer Matrix Method (TMM). Wavelength tuning is achieved through thermal modulation of refractive variation of the cavity.As the cavity Si is heated,the refractive index of the cavity increases.When the temperature of cavity Si changes within100°C,the central wavelength gets a continuous 8nm shift from 1550nm to 1558nm, which is right located in the WDM (Wavelength division multiplexing) networks operating at C-band. Moreover, by calculating, the tuning sensitivity is about 0.08nm/°C. Owing to the compact size and excellent characteristics of integration, the proposed component has a promising utilization in spectroscopy and optical communication.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 767
Author(s):  
Ahmed Abdelghfar ◽  
Mohamed A. Mousa ◽  
Bassant M. Fouad ◽  
Ahmed H. Saad ◽  
Noha Anous ◽  
...  

Hyperspectral imaging has a wide range of uses, from medical diagnostics to crop monitoring; however, conventional hyperspectral imaging systems are relatively slow, bulky, and rather costly. In this paper, we present an inexpensive, compact tunable optical filter for hyperspectral applications. The filter is based on a Fabry-Pérot interferometer utilizing hybrid metallic-dielectric mirrors and actuated using a MEMS electrostatic actuator. The optical filter is designed using the transfer matrix method; then, the results were verified by an electromagnetic wave simulator. The actuator is based on a ring-shaped parallel plate capacitor and is designed using COMSOL Multiphysics. An actuation displacement of 170 nm was used, which is the required distance to tune the filter over the whole visible range (400–700 nm). There are two designs proposed for the optical filter: the first was optimized to provide maximum transmission and the other is optimized to have minimum full-width-half-maximum (FWHM) value. The first design has a maximum transmission percentage of 94.45% and a minimum transmission of 86.34%; while the minimum FWHM design had an average FWHM value of 7.267 nm. The results showed improvements over the current commercial filters both in transmission and in bandwidth.


2004 ◽  
Author(s):  
Haixing Chen ◽  
Tengchao Huang ◽  
Weidong Shen ◽  
Haifeng Li ◽  
Peifu Gu

2004 ◽  
Vol 35 (1) ◽  
pp. 1530 ◽  
Author(s):  
T. Kataoka ◽  
S. E. Day ◽  
D. R. Selviah ◽  
A. Fernández

2002 ◽  
Vol 722 ◽  
Author(s):  
T. S. Sriram ◽  
B. Strauss ◽  
S. Pappas ◽  
A. Baliga ◽  
A. Jean ◽  
...  

AbstractThis paper describes the results of extensive performance and reliability characterization of a silicon-based surface micro-machined tunable optical filter. The device comprises a high-finesse Fabry-Perot etalon with one flat and one curved dielectric mirror. The curved mirror is mounted on an electrostatically actuated silicon nitride membrane tethered to the substrate using silicon nitride posts. A voltage applied to the membrane allows the device to be tuned by adjusting the length of the cavity. The device is coupled optically to an input and an output single mode fiber inside a hermetic package. Extensive performance characterization (over operating temperature range) was performed on the packaged device. Parameters characterized included tuning characteristics, insertion loss, filter line-width and side mode suppression ratio. Reliability testing was performed by subjecting the MEMS structure to a very large number of actuations at an elevated temperature both inside the package and on a test board. The MEMS structure was found to be extremely robust, running trillions of actuations without failures. Package level reliability testing conforming to Telcordia standards indicated that key device parameters including insertion loss, filter line-width and tuning characteristics did not change measurably over the duration of the test.


Sign in / Sign up

Export Citation Format

Share Document