Measuring the fractional and integral topological charges of the optical vortex beams using a diffraction grating

Optik ◽  
2015 ◽  
Vol 126 (24) ◽  
pp. 5263-5268 ◽  
Author(s):  
Man Liu
2021 ◽  
Vol 143 ◽  
pp. 107339
Author(s):  
Ke Li ◽  
Kaifei Tang ◽  
Da Lin ◽  
Jing Wang ◽  
Bingxuan Li ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1485
Author(s):  
Wei Wang ◽  
Ruikang Zhao ◽  
Shilong Chang ◽  
Jing Li ◽  
Yan Shi ◽  
...  

In this paper, one spin-selected vortex metalens composed of silicon nanobricks is designed and numerically investigated at the mid-infrared band, which can produce vortex beams with different topological charges and achieve different spin lights simultaneously. Another type of spin-independent vortex metalens is also designed, which can focus the vortex beams with the same topological charge at the same position for different spin lights, respectively. Both of the two vortex metalenses can achieve high-efficiency focusing for different spin lights. In addition, the spin-to-orbital angular momentum conversion through the vortex metalens is also discussed in detail. Our work facilitates the establishment of high-efficiency spin-related integrated devices, which is significant for the development of vortex optics and spin optics.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liuhao Zhu ◽  
Miaomiao Tang ◽  
Hehe Li ◽  
Yuping Tai ◽  
Xinzhong Li

Abstract Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.


2014 ◽  
Author(s):  
Konstantin Mishchik ◽  
Yannick Petit ◽  
Etienne Brasselet ◽  
Inka Manek-Hönninger ◽  
Nicolas Marquestaut ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 727-732
Author(s):  
Marco Piccardo ◽  
Antonio Ambrosio

AbstractThe purity of an optical vortex beam depends on the spread of its energy among different azimuthal and radial modes, also known as $\ell $- and p-modes. The smaller the spread, the higher the vortex purity and more efficient its creation and detection. There are several methods to generate vortex beams with well-defined orbital angular momentum, but only few exist allowing selection of a pure radial mode. These typically consist of many optical elements with rather complex arrangements, including active cavity resonators. Here, we show that it is possible to generate pure vortex beams using a single metasurface plate—called p-plate as it controls radial modes—in combination with a polarizer. We generalize an existing theory of independent phase and amplitude control with birefringent nanopillars considering arbitrary input polarization states. The high purity, sizeable creation efficiency, and impassable compactness make the presented approach a powerful complex amplitude modulation tool for pure vortex generation, even in the case of large topological charges.


2021 ◽  
Vol 16 (5) ◽  
pp. 838-843
Author(s):  
Yan Zhang ◽  
Minru Hao ◽  
Min Shao ◽  
Yunzhe Zhang

We theoretically analyze the linear momentum density and orbital angular momentum (OAM) propagation characteristics of Gaussian vortex beams in free space, and perform detailed numerical simulation analysis of the linear momentum density and OAM propagation characteristics. Further, we study the variation of the propagation characteristics with different topological charges. In addition, we also analyzed the position of momentum in the transverse profile, where the momentum density of the spot will be broadened with propagation distance. This study can provide guidance for using vortex beams in optical communication and manipulation.


2021 ◽  
Author(s):  
Cheng Cui ◽  
Zheng Liu ◽  
Bin Hu ◽  
Yurong Jiang ◽  
Juan Liu

Abstract Tunable metasurface devices are considered to be an important link for metasurfaces to practical applications due to their functional diversity and high adaptability to the application scenarios. Metasurfaces have unique value in the generation of vortex beams because they can realize light wavefronts of any shape. In recent years, several vortex beam generators using metasurfaces have been proposed. However, the topological charge generally lacks tunability, which reduces the scope of their applications. Here, we propose an active tunable multi-channeled vortex beam switch based on a moiré structure composed of two cascaded dielectric metasurfaces. The simulation results show that when linearly polarized light with a wavelength of 810 nm is incident, the topological charge from -6 to +6 can be continuously generated by relatively rotating the two metasurfaces. Meanwhile, different topological charges are deflected to different spatial channels, realizing the function of multi-channeled signal transmission. We also study the efficiency and broadband performance of the structure. The proposed multi-channeled separation method of vortex beams that can actively tune topological charges paves the way for the compactness and functional diversity of devices in the fields of optical communications, biomedicine, and optoelectronics.


2019 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Zhirong Liu ◽  
Kelin Huang ◽  
Anlian Yang ◽  
Xun Wang ◽  
Philip H. Jones

In this paper, a recently-proposed pure-phase optical element, the fractal conical lens (FCL), is introduced for the regulation of strongly-focused circularly-polarized optical vortices in a high numerical aperture (NA) optical system. Strong focusing characteristics of circularly polarized optical vortices through a high NA system in cases with and without a FCL are investigated comparatively. Moreover, the conversion between spin angular momentum (SAM) and orbital angular momentum (OAM) of the focused optical vortex in the focal vicinity is also analyzed. Results revealed that a FCL of different stage S could significantly regulate the distributions of tight focusing intensity and angular momentum of the circularly polarized optical vortex. The interesting results obtained here may be advantageous when using a FCL to shape vortex beams or utilizing circularly polarized vortex beams to exploit new-type optical tweezers.


2008 ◽  
Vol 25 (3) ◽  
pp. 823 ◽  
Author(s):  
John Vickers ◽  
Matt Burch ◽  
Reeta Vyas ◽  
Surendra Singh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document