High performance GPU based optimized feature matching for computer vision applications

Optik ◽  
2016 ◽  
Vol 127 (3) ◽  
pp. 1153-1159 ◽  
Author(s):  
Kajal Sharma
Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 847 ◽  
Author(s):  
Dong Zhang ◽  
Lindsey Ann Raven ◽  
Dah-Jye Lee ◽  
Meng Yu ◽  
Alok Desai

Finding corresponding image features between two images is often the first step for many computer vision algorithms. This paper introduces an improved synthetic basis feature descriptor algorithm that describes and compares image features in an efficient and discrete manner with rotation and scale invariance. It works by performing a number of similarity tests between the feature region surrounding the feature point and a predetermined number of synthetic basis images to generate a feature descriptor that uniquely describes the feature region. Features in two images are matched by comparing their descriptors. By only storing the similarity of the feature region to each synthetic basis image, the overall storage size is greatly reduced. In short, this new binary feature descriptor is designed to provide high feature matching accuracy with computational simplicity, relatively low resource usage, and a hardware friendly design for real-time vision applications. Experimental results show that our algorithm produces higher precision rates and larger number of correct matches than the original version and other mainstream algorithms and is a good alternative for common computer vision applications. Two applications that often have to cope with scaling and rotation variations are included in this work to demonstrate its performance.


Author(s):  
Suresha .M ◽  
. Sandeep

Local features are of great importance in computer vision. It performs feature detection and feature matching are two important tasks. In this paper concentrates on the problem of recognition of birds using local features. Investigation summarizes the local features SURF, FAST and HARRIS against blurred and illumination images. FAST and Harris corner algorithm have given less accuracy for blurred images. The SURF algorithm gives best result for blurred image because its identify strongest local features and time complexity is less and experimental demonstration shows that SURF algorithm is robust for blurred images and the FAST algorithms is suitable for images with illumination.


2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


Sign in / Sign up

Export Citation Format

Share Document