scholarly journals Hardware Friendly Robust Synthetic Basis Feature Descriptor

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 847 ◽  
Author(s):  
Dong Zhang ◽  
Lindsey Ann Raven ◽  
Dah-Jye Lee ◽  
Meng Yu ◽  
Alok Desai

Finding corresponding image features between two images is often the first step for many computer vision algorithms. This paper introduces an improved synthetic basis feature descriptor algorithm that describes and compares image features in an efficient and discrete manner with rotation and scale invariance. It works by performing a number of similarity tests between the feature region surrounding the feature point and a predetermined number of synthetic basis images to generate a feature descriptor that uniquely describes the feature region. Features in two images are matched by comparing their descriptors. By only storing the similarity of the feature region to each synthetic basis image, the overall storage size is greatly reduced. In short, this new binary feature descriptor is designed to provide high feature matching accuracy with computational simplicity, relatively low resource usage, and a hardware friendly design for real-time vision applications. Experimental results show that our algorithm produces higher precision rates and larger number of correct matches than the original version and other mainstream algorithms and is a good alternative for common computer vision applications. Two applications that often have to cope with scaling and rotation variations are included in this work to demonstrate its performance.

2021 ◽  
pp. 51-64
Author(s):  
Ahmed A. Elngar ◽  
◽  
◽  
◽  
◽  
...  

Feature detection, description and matching are essential components of various computer vision applications; thus, they have received a considerable attention in the last decades. Several feature detectors and descriptors have been proposed in the literature with a variety of definitions for what kind of points in an image is potentially interesting (i.e., a distinctive attribute). This chapter introduces basic notation and mathematical concepts for detecting and describing image features. Then, it discusses properties of perfect features and gives an overview of various existing detection and description methods. Furthermore, it explains some approaches to feature matching. Finally, the chapter discusses the most used techniques for performance evaluation of detection algorithms.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 391
Author(s):  
Dah-Jye Lee ◽  
Samuel G. Fuller ◽  
Alexander S. McCown

Feature detection, description, and matching are crucial steps for many computer vision algorithms. These steps rely on feature descriptors to match image features across sets of images. Previous work has shown that our SYnthetic BAsis (SYBA) feature descriptor can offer superior performance to other binary descriptors. This paper focused on various optimizations and hardware implementation of the newer and optimized version. The hardware implementation on a field-programmable gate array (FPGA) is a high-throughput low-latency solution which is critical for applications such as high-speed object detection and tracking, stereo vision, visual odometry, structure from motion, and optical flow. We compared our solution to other hardware designs of binary descriptors. We demonstrated that our implementation of SYBA as a feature descriptor in hardware offered superior image feature matching performance and used fewer resources than most binary feature descriptor implementations.


2019 ◽  
Vol 11 (4) ◽  
pp. 430 ◽  
Author(s):  
Yunyun Dong ◽  
Weili Jiao ◽  
Tengfei Long ◽  
Lanfa Liu ◽  
Guojin He ◽  
...  

Feature matching via local descriptors is one of the most fundamental problems in many computer vision tasks, as well as in the remote sensing image processing community. For example, in terms of remote sensing image registration based on the feature, feature matching is a vital process to determine the quality of transform model. While in the process of feature matching, the quality of feature descriptor determines the matching result directly. At present, the most commonly used descriptor is hand-crafted by the designer’s expertise or intuition. However, it is hard to cover all the different cases, especially for remote sensing images with nonlinear grayscale deformation. Recently, deep learning shows explosive growth and improves the performance of tasks in various fields, especially in the computer vision community. Here, we created remote sensing image training patch samples, named Invar-Dataset in a novel and automatic way, then trained a deep learning convolutional neural network, named DescNet to generate a robust feature descriptor for feature matching. A special experiment was carried out to illustrate that our created training dataset was more helpful to train a network to generate a good feature descriptor. A qualitative experiment was then performed to show that feature descriptor vector learned by the DescNet could be used to register remote sensing images with large gray scale difference successfully. A quantitative experiment was then carried out to illustrate that the feature vector generated by the DescNet could acquire more matched points than those generated by hand-crafted feature Scale Invariant Feature Transform (SIFT) descriptor and other networks. On average, the matched points acquired by DescNet was almost twice those acquired by other methods. Finally, we analyzed the advantages of our created training dataset Invar-Dataset and DescNet and gave the possible development of training deep descriptor network.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6235
Author(s):  
Chengyi Xu ◽  
Ying Liu ◽  
Fenglong Ding ◽  
Zilong Zhuang

Considering the difficult problem of robot recognition and grasping in the scenario of disorderly stacked wooden planks, a recognition and positioning method based on local image features and point pair geometric features is proposed here and we define a local patch point pair feature. First, we used self-developed scanning equipment to collect images of wood boards and a robot to drive a RGB-D camera to collect images of disorderly stacked wooden planks. The image patches cut from these images were input to a convolutional autoencoder to train and obtain a local texture feature descriptor that is robust to changes in perspective. Then, the small image patches around the point pairs of the plank model are extracted, and input into the trained encoder to obtain the feature vector of the image patch, combining the point pair geometric feature information to form a feature description code expressing the characteristics of the plank. After that, the robot drives the RGB-D camera to collect the local image patches of the point pairs in the area to be grasped in the scene of the stacked wooden planks, also obtaining the feature description code of the wooden planks to be grasped. Finally, through the process of point pair feature matching, pose voting and clustering, the pose of the plank to be grasped is determined. The robot grasping experiment here shows that both the recognition rate and grasping success rate of planks are high, reaching 95.3% and 93.8%, respectively. Compared with the traditional point pair feature method (PPF) and other methods, the method present here has obvious advantages and can be applied to stacked wood plank grasping environments.


2020 ◽  
Vol 17 (9) ◽  
pp. 4419-4424
Author(s):  
Venkat P. Patil ◽  
C. Ram Singla

Image mosaicing is a method that combines several images or pictures of the superposing field of view to create a panoramic high-resolution picture. In the field of medical imagery, satellite data, computer vision, military automatic target recognition can be seen the importance of image mosaicing. The present domains of studies in computer vision, computer graphics and photo graphics are image stitching and video stitching. The registration of images includes five primary phases: feature detection and description; matching feature; rejection of outliers; transformation function derivation; image replication. Stitching images from specific scenes is a difficult job when images can be picked up under different noise. In this paper, we examine an algorithm for seamless stitching of images in order to resolve all such problems by employing dehazing methods to the collected images, and before defining image features and bound energy characteristics that match image-based features of the SIFT-Scale Invariant Feature Transform. The proposed method experimentation is compared with the conventional methods of stitching of image using squared distance to match the feature. The proposed seamless stitching technique is assessed on the basis of the metrics, HSGV and VSGV. The analysis of this stitching algorithm aims to minimize the amount of computation time and discrepancies in the final stitched results obtained.


2020 ◽  
Vol 10 (3) ◽  
pp. 225-234
Author(s):  
Hanhoon Park

The quality of RGB images can be degraded by poor weather or lighting conditions. Thus, to make computer vision techniques work correctly, images need to be enhanced first. This paper proposes an RGB image enhancement method for improving feature matching which is a core step in most computer vision techniques. The proposed method decomposes near-infrared (NIR) image into fine detail, medium detail, and base images by using weighted least squares filters (WLSF) and boosts the medium detail image. Then, the fine and boosted medium detail images are combined, and the combined NIR detail image replaces the luminance detail image of an RGB image. Experiments demonstrates that the proposed method can effectively enhance RGB image; hence more stable image features are extracted. In addition, the method can minimize the loss of the useful visual (or optical) information of the original RGB image that can be used for other vision tasks.


Author(s):  
Suresha .M ◽  
. Sandeep

Local features are of great importance in computer vision. It performs feature detection and feature matching are two important tasks. In this paper concentrates on the problem of recognition of birds using local features. Investigation summarizes the local features SURF, FAST and HARRIS against blurred and illumination images. FAST and Harris corner algorithm have given less accuracy for blurred images. The SURF algorithm gives best result for blurred image because its identify strongest local features and time complexity is less and experimental demonstration shows that SURF algorithm is robust for blurred images and the FAST algorithms is suitable for images with illumination.


Sign in / Sign up

Export Citation Format

Share Document