Effect of substrate temperature on the material properties of the Y2SiO5: Ce3+ thin film by pulsed laser deposition (PLD) method

Optik ◽  
2019 ◽  
Vol 184 ◽  
pp. 508-517 ◽  
Author(s):  
H.T. Haile ◽  
F.B. Dejene
2008 ◽  
Vol 8 (5) ◽  
pp. 2604-2608 ◽  
Author(s):  
Y. L. Wang ◽  
M. C. Li ◽  
X. K. Chen ◽  
G. Wu ◽  
J. P. Yang ◽  
...  

Nano-polycrystalline vanadium oxide thin films have been successfully produced by pulsed laser deposition on Si(100) substrates using a pure vanadium target in an oxygen atmosphere. The vanadium oxide thin film is amorphous when deposited at relatively low substrate temperature (500 °C) and enhancing substrate temperature (600–800 °C) appears to be efficient in crystallizing VOx thin films. Nano-polycrystalline V3O7 thin film has been achieved when deposited at oxygen pressure of 8 Pa and substrate temperature of 600 °C. Nano-polycrystalline VO2 thin films with a preferred (011) orientation have been obtained when deposited at oxygen pressure of 0.8 Pa and substrate temperatures of 600–800 °C. The vanadium oxide thin films deposited at high oxygen pressure (8 Pa) reveal a mix-valence of V5+ and V4+, while the VOx thin films deposited at low oxygen pressure (0.8 Pa) display a valence of V4+. The nano-polycrystalline vanadium oxide thin films prepared by pulsed laser deposition have smooth surface with high qualities of mean crystallite size ranging from 30 to 230 nm and Ra ranging from 1.5 to 22.2 nm. Relative low substrate temperature and oxygen pressure are benifit to aquire nano-polycrystalline VOx thin films with small grain size and low surface roughness.


2006 ◽  
Vol 200 (12-13) ◽  
pp. 4027-4031 ◽  
Author(s):  
D.M. Zhang ◽  
L. Guan ◽  
Z.H. Li ◽  
G.J. Pan ◽  
H.Z. Sun ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 412 ◽  
Author(s):  
Mariana Osiac ◽  
Nicoleta Cioatera ◽  
Maria Jigau

The iron doped tungsten-oxide (Fe and WO3) thin film with different morphology and crystalline structures were obtained for different substrate temperatures at the oxygen pressure of 14.66 Pa. The Fe-doped WO3 films were deposited by pulsed laser deposition (PLD). The influence of the substrate temperature on the surface and on the crystalline phases of the films was studied. The XRD (X-ray diffraction) analysis indicates the changing in the crystalline phases from γ-monoclinic to a mixture of γ-monoclinic and hexagonal phases dependent on the temperature of annealing and as-grown films. Related to the as-grown and annealing films conditions, the SEM (scanning electron microscopy) shows a change in the image surface from nanoneedles, to nanoporous, and further to long nanowires and broad nanobands. Energy-dispersive X-ray spectroscopy (EDX) shows the elemental composition of the Fe-doped WO3 film as-grown and after annealing treatment. Raman spectroscopy presented the main vibration mode of the Fe-doped WO3 thin film. The optical energy bandgap of the films is decreasing as the substrate temperature increases.


Sign in / Sign up

Export Citation Format

Share Document