scholarly journals On twist springback of a curved channel with pre-strain effect

Author(s):  
Juan Liao ◽  
Shanshan Chen ◽  
Xin Xue ◽  
Hongliang Xiang
2021 ◽  
Vol 287 ◽  
pp. 116224
Author(s):  
Shanshan Chen ◽  
Juan Liao ◽  
Hongliang Xiang ◽  
Xin Xue ◽  
António B. Pereira

1997 ◽  
Vol 34 (4) ◽  
pp. 325-330 ◽  
Author(s):  
Kazuaki Nonaka ◽  
Yasunori Sasaki ◽  
Yoshihisa Watanabe ◽  
Ken-ichi Yanagita ◽  
Minoru Nakata

Objective: This study examined the factors related to the morphogenesis of the craniofacial complex of the CL/Fr mouse fetus affected with CLP based on the findings of a lateral cephalogram. Design: Embryo transfer experiments were performed to determine the effect of the fetus weight, dam strain, dam weight, and litter size on the intra-uterine craniofacial morphogenesis of CL/Fr mouse fetuses. On the 18th gestational day, each pregnant dam that had received CL/Fr mouse embryos was laparotomized to remove the transferred fetuses that had developed in the uteri of the cleft lip and palate (CLP)-susceptible CL/Fr strain dam and the CLP-resistant C57BL strain dam. A cephalometric observation of the craniofacial morphology of each fetus was subsequently performed. Results: Based on a multiple regression analysis, the standardized partial regression coefficients of the affected fetus weight, the dam weight, and the litter size on the maxillary size of the affected CL/Fr fetus were 0.71 (p < .01), 0.03, and −0.07. According to a least-squares analysis of variance, the dam strain effect in addition to the effect of the affected fetus weight on the maxillary size and the cranial size of the affected fetuses was significant (p < .01 for cranial size, p < .05 for maxillary size) and close to a significant level (p = .09) for the mandibular size of the affected fetuses. The adjusted maxillary size and cranial size after statistically eliminating the effects of the affected fetus weight, dam weight, and lifter size on each original craniofacial size of the affected fetuses that had developed in the CL/Er dam strain were also significantly smaller than those of the affected fetuses that had developed in the C57BL dam strain. Conclusions: The present results indicate that the craniofacial growth of the CL/Fr mouse fetus affected with CLP increased in proportion to the fetus weight. The dam strain effect, in addition to the effect of the affected fetus weight, could thus not be ignored when the etiology of the spontaneous CLP was examined, while the uterine environment, provided by the CL/Fr strain dam, retarded the intra-uterine craniofacial growth of the affected fetuses. It was therefore concluded that the dam strain effect, as well as the effect of the affected fetus weight, both play an important role on the craniofacial morphogenesis of the CL/Fr strain of the affected fetuses that developed in both strain dams.


2021 ◽  
Vol 35 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Keyu Gong ◽  
Yong Cao ◽  
Yu Feng ◽  
Ying Zhang ◽  
Jiang Qin

2019 ◽  
Vol 33 (31) ◽  
pp. 1950384
Author(s):  
Di Lu ◽  
Yu-E Yang ◽  
Weichun Zhang ◽  
Caixia Wang ◽  
Jining Fang ◽  
...  

We have investigated Raman spectra of the G and 2D lines of a single-layer graphene (SLG) with metallic contacts. The shift of the G and 2D lines is correlated to two different factors. Before performing annealing treatment or annealing under low temperature, the electron transfer on graphene surface is dominated by nonuniform strain effect. As the annealing treatment is enhanced, however, a suitable annealing treatment can eliminate the nonuniform strain effect where the relative work function (WF) between graphene and metal becomes a main factor to determine electronic transfer. Moreover, it is confirmed that the optimized annealing treatment can also decrease effectively the structural defect and induced disorder in graphene due to metallic contacts.


2006 ◽  
Vol 913 ◽  
Author(s):  
Young Way Teh ◽  
John Sudijono ◽  
Alok Jain ◽  
Shankar Venkataraman ◽  
Sunder Thirupapuliyur ◽  
...  

AbstractThis work focuses on the development and physical characteristics of a novel dielectric film for a pre-metal dielectric (PMD) application which induces a significant degree of tensile stress in the channel of a sub-65nm node CMOS structure. The film can be deposited at low temperatures to meet the requirements of NiSi integration while maintaining void-free gap fill and superior film quality such as moisture content and uniformity. A manufacturable and highly reliable oxide film has been demonstrated through both TCAD simulation and real device data, showing ~6% NMOS Ion-Ioff improvement; no Ion-Ioff improvement or degradation on PMOS. A new concept has been proposed to explain the PMD strain effect on device performance improvement. Improvement in Hot Carrier immunity is observed compared to similar existing technologies using high density plasma (HDP) deposition techniques.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Xiaoyan Liu ◽  
Lei Wang ◽  
Yi Tong

First-principle density functional theory simulations have been performed to predict the electronic structures and optoelectronic properties of ultrathin indium tin oxide (ITO) films, having different thicknesses and temperatures. Our results and analysis led us to predict that the physical properties of ultrathin films of ITO have a direct relation with film thickness rather than temperature. Moreover, we found that a thin film of ITO (1 nm thickness) has a larger absorption coefficient, lower reflectivity, and higher transmittance in the visible light region compared with that of 2 and 3 nm thick ITO films. We suggest that this might be due to the stronger surface strain effect in 1 nm thick ITO film. On the other hand, all three thin films produce similar optical spectra. Finally, excellent agreement was found between the calculated electrical resistivities of the ultrathin film of ITO and that of its experimental data. It is concluded that the electrical resistivities reduce along with the increase in film thickness of ITO because of the short strain length and limited bandgap distributions.


Author(s):  
Murali Badanthadka ◽  
Lidwin D’Souza ◽  
Fathima Salwa

Abstract Objectives Psoriasis is an autoimmune, inflammatory disease that needs a reliable animal model. Imiquimod (IMQ)-induced psoriasis is a widely used preclinical tool for psoriasis research. However, this model is sensitive to the genetic variation of mice. The present study explores mice’s genetic background on disease stability and severity induced by IMQ. Methods Three distinct strains of mice (Balb/c, C57BL/6, and Swiss albino) were divided into four groups (Vaseline, IMQ, IMQ+Clobetasol, and IMQ+Curcumin). Psoriasis area severity index (PASI) score, ear/back skin thickness, body weight alterations, and histopathological examination were employed to analyze disease severity. The spleen index studied the systemic effect. Strain effect on oxidative stress induced by IMQ was evaluated by estimating antioxidant factors, superoxide dismutase (SOD), catalase, and glutathione (GSH). Results IMQ application resulted in increased PASI score, thickness, and alterations in body weight, confirming disease development in all the mice. However, the disease stability/severity between these strains was not identical. Although IMQ application caused splenomegaly, IMQ+curcumin treated C57BL/6 mice demonstrated a synergistic effect of IMQ and curcumin on the spleen resulting in increased splenomegaly. Decreased cellular enzyme activity in SOD, Catalase, and levels of GSH was observed in IMQ challenged mice, indicating the participation of the redox system in the genesis of the disease that was comparable among the strains. Conclusions These results indicate the existence of strain-dependent development of the disease. The Swiss model was found to be better in terms of disease severity and stability than other models. Further, a detailed mechanistic study might help to explain the pathological difference between these strains.


2021 ◽  
Author(s):  
Menggang Li ◽  
Zhonglong Zhao ◽  
Zhonghong Xia ◽  
Mingchuan Luo ◽  
Qinghua Zhang ◽  
...  

1999 ◽  
Vol 14 (1) ◽  
pp. 90-96 ◽  
Author(s):  
R. Ramamoorthy ◽  
S. Ramasamy ◽  
D. Sundararaman

Nanocrystalline zirconia powders in pure form and doped with yttria and calcia were prepared by the precipitation method. In the as-prepared condition, all the doped samples show only monoclinic phase, independent of the dopants and dopant concentration. On annealing the powders at 400 °C and above, in the case of 3 and 6 mol% Y2O3 stabilized ZrO2 (3YSZ and 6YSZ), the monoclinic phase transforms to tetragonal and cubic phases, respectively, whereas in 3 and 6 mol% CaO stabilized ZrO2 (3CSZ and 6CSZ), the volume percentage of the monoclinic phase gradually decreases up to the annealing temperature of about 1000 °C and then increases for higher annealing temperatures. The presence of monoclinic phase in the as-prepared samples of doped zirconia has been attributed to the lattice strain effect which results in the less symmetric lattice. For the annealing temperatures below 1000 °C, the phenomenon of partial stabilization of the tetragonal phase in 3CSZ and 6CSZ can be explained in terms of the grain size effect. High resolution transmission electron microscopy (HRTEM) observations reveal the lattice strain structure in the as-prepared materials. The particles are found to be a tightly bound aggregate of small crystallites with average size of 10 nm. The morphology of the particles is observed to be dependent on the dopants and dopant concentration.


Sign in / Sign up

Export Citation Format

Share Document