Buckling, free vibration and bending analysis of functionally graded sandwich plates based on an optimized hyperbolic unified formulation

2016 ◽  
Vol 119 ◽  
pp. 170-186 ◽  
Author(s):  
J.L. Mantari ◽  
J.C. Monge
2021 ◽  
pp. 109963622110204
Author(s):  
Fenglian Li ◽  
Wenhao Yuan ◽  
Chuanzeng Zhang

Based on the hyperbolic tangent shear deformation theory, free vibration and sound insulation of two different types of functionally graded (FG) honeycomb sandwich plates with negative Poisson’s ratio are studied in this paper. Using Hamilton’s principle, the vibration and vibro-acoustic coupling dynamic equations for FG honeycomb sandwich plates with simply supported edges are established. By applying the Navier’s method and fluid–solid interface conditions, the derived governing dynamic equations are solved. The natural frequencies and the sound insulation of FG honeycomb sandwich plates obtained in this work are compared with the numerical results by the finite element simulation. It is proven that the theoretical models for the free vibration and the sound insulation are accurate and efficient. Moreover, FG sandwich plates with different honeycomb cores are investigated and compared. The corresponding results show that the FG honeycomb core with negative Poisson’s ratio can yield much lower frequencies. Then, the influences of various geometrical and material parameters on the vibration and sound insulation performance are systematically analyzed.


2018 ◽  
Vol 33 (5) ◽  
pp. 673-724 ◽  
Author(s):  
Pavan Kumar ◽  
CV Srinivasa

Many review articles were published on free vibration and buckling of laminated composites, sandwich plates, and shells. The present article reviews the literature on the buckling and free vibration analysis of shear deformable isotropic and laminated composite sandwich plates and shells using various methods available for plates in the past few decades. Various theories, finite element modeling, and experimentations have been reported for the analysis of sandwich plates and shells. Few papers on functionally graded material plates, plates with smart skin (electrorheological, magnetorheological, and piezoelectric), and also viscoelastic materials were also reviewed. The scope for future research on sandwich plates and shells was also accessed.


2020 ◽  
Vol 244 ◽  
pp. 112298 ◽  
Author(s):  
Yantao Zhang ◽  
Guoyong Jin ◽  
Mingfei Chen ◽  
Tiangui Ye ◽  
Chuanmeng Yang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Hong Nguyen Thi

Free vibration and static bending analysis of piezoelectric functionally graded material plates resting on one area of the two-parameter elastic foundation is firstly investigated in this paper. The third-order shear deformation theory of Reddy and 8-node plate elements are employed to derive the finite element formulations of the structures; this theory does not need any shear correction factors; however, the mechanical response of the structure is described exactly. Verification problems are performed to evaluate the accuracy of the proposed theory and mathematical model. A wide range of parameter study is investigated to figure out the effect of geometrical, physical, and material properties such as the plate dimension, volume fraction index, piezoelectric effect, elastic foundation coefficients, and the square size of the area of the foundation on the free vibration and static bending of piezoelectric functionally graded material plates. These numerical results of this work aim to contribute to scientific knowledge of these smart structures in engineering practice.


2011 ◽  
Vol 32 (7) ◽  
pp. 925-942 ◽  
Author(s):  
L. Hadji ◽  
H. A. Atmane ◽  
A. Tounsi ◽  
I. Mechab ◽  
E. A. Adda Bedia

Sign in / Sign up

Export Citation Format

Share Document