Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment

2020 ◽  
Vol 186 ◽  
pp. 105906 ◽  
Author(s):  
Ngo Dinh Dat ◽  
Tran Quoc Quan ◽  
Vinyas Mahesh ◽  
Nguyen Dinh Duc
2020 ◽  
Vol 7 (1) ◽  
pp. 153-165
Author(s):  
Rajendran Selvamani ◽  
M. Mahaveer Sree Jayan ◽  
Rossana Dimitri ◽  
Francesco Tornabene ◽  
Farzad Ebrahimi

AbstractThe present paper aims at studying the nonlinear ultrasonic waves in a magneto-thermo-elastic armchair single-walled (SW) carbon nanotube (CNT) with mass sensors resting on a polymer substrate. The analytical formulation accounts for small scale effects based on the Eringen’s nonlocal elasticity theory. The mathematical model and its differential equations are solved theoretically in terms of dimensionless frequencies while assuming a nonlinear Winkler-Pasternak-type foundation. The solution is obtained by means of ultrasonic wave dispersion relations. A parametric work is carried out to check for the effect of the nonlocal scaling parameter, together with the magneto-mechanical loadings, the foundation parameters, the attached mass, boundary conditions and geometries, on the dimensionless frequency of nanotubes. The sensitivity of the mechanical response of nanotubes investigated herein, could be of great interest for design purposes in nano-engineering systems and devices.


2018 ◽  
Vol 22 (8) ◽  
pp. 2818-2860 ◽  
Author(s):  
Paul Praveen A ◽  
Vasudevan Rajamohan ◽  
Ananda Babu Arumugam ◽  
Arun Tom Mathew

In the present study, the free and forced vibration responses of the composite sandwich plate with carbon nanotube reinforced honeycomb as the core material and laminated composite plates as the top and bottom face sheets are investigated. The governing equations of motion of hybrid composite honeycomb sandwich plates are derived using higher order shear deformation theory and solved numerically using a four-noded rectangular finite element with nine degrees of freedom at each node. Further, various elastic properties of honeycomb core materials with and without reinforcement of carbon nanotube and face materials are evaluated experimentally using the alternative dynamic approach. The effectiveness of the finite element formulation is demonstrated by performing the results evaluated experimentally on a prototype composite sandwich plate with and without carbon nanotube reinforcement in core material. Various parametric studies are performed numerically to study the effects of carbon nanotube wt% in core material, core thickness, ply orientations, and various boundary conditions on the dynamic properties of composite honeycomb sandwich plate. Further, the transverse vibration responses of hybrid composite sandwich plates under harmonic force excitation are analyzed at various wt% of carbon nanotubes and the results are compared with those obtained without addition of carbon nanotubes to demonstrate the effectiveness of carbon nanotube reinforcement in enhancing the stiffness and damping characteristics of the structures. The study provides the guidelines for the designer on enhancing both the stiffness and damping properties of sandwich structures through carbon nanotube reinforcement in core materials.


2020 ◽  
pp. 107754632094833 ◽  
Author(s):  
Rasoul Rostami ◽  
Mehdi Mohammadimehr

In this article, the vibration control of the sandwich plate reinforced by carbon nanotube in the face sheet and porous core integrated with sensor and actuator layers is investigated. The piezoelectric layers at the bottom and top surfaces of the sandwich plate play the role of the sensor and actuator. By applying the Hamilton’s principle, the governing equations of the structure are derived based on the first-order shear deformation theory. The perturbation method is used to find the relationships between nonlinear frequency and amplitude response of the sandwich plate. The effect of porosity coefficient, temperature, volume fraction of carbon nanotube, and geometric parameters on nonlinear frequency and vibration control of the sandwich plate is studied. Moreover, the influence of material type of sensor and actuator and scale transformation parameter on the nonlinear frequency and vibration control of the system is investigated. According to the obtained results, in the case of ε < 0, the system stiffness presents softening behavior, whereas in the case of ε > 0, the system stiffness becomes hardening. By considering the effect of the voltage coefficient on the vibration control and the needed time for stabilization, the results of this article can be used to design, manufacture, and control modern structures.


2019 ◽  
Vol 30 (18-19) ◽  
pp. 2651-2669
Author(s):  
Mohammad Hossein Zamani ◽  
Mohammad Heidari-Rarani ◽  
Alireza Ariaei

In this study, the influence of carbon nanotubes agglomeration is investigated on the electroelastic dynamic behavior of a sandwich plate. The smart sandwich plate consists of functionally graded porous layer as the core and piezoelectric layers as the face sheets, which is subjected to the harmonic electrical loading. In order to take into account the continuum model for the silica aerogel foundation of the smart structure, the modified Vlasov’s model is applied. The porosity distribution of the core layer varies non-uniformly throughout the thickness due to the non-uniform function. The equivalent material properties of nanocomposite core layer are determined using the Eshelby–Mori–Tanaka approach, in which the influence of carbon nanotube agglomeration is considered. For modeling the electroelastic fact sheets behavior, the piezoelasticity theory is adopted. On the basis of non-polynomial shear and normal deformation theory, the governing equations of motion are inferred applying the Hamilton’s principle and the obtained equations are solved by an iterative procedure. The verification is accomplished through the available results in the literature and the influences of carbon nanotube agglomeration, different geometrical parameters, porosity index, and applied voltage are assessed on the dynamic deflection of nanocomposite sandwich plate.


2013 ◽  
Vol 662 ◽  
pp. 59-63
Author(s):  
Xin Mou Ma ◽  
Lie Zhen Chang

In this study, analytical solutions are obtained by homotopy perturbation method (HPM) for the nonlinear vibration equation of single-wall nanotube (SWNT). Novel and accurate analytical solutions for the frequency and displacement are derived. Comparison of the result obtained by the HPM with exact solutions reveals that only the first or second order approximation of the HPM leads to higher accurate solution.


Sign in / Sign up

Export Citation Format

Share Document