Cycle-dependent creep-fatigue deformation and life predictions in a nickel-based superalloy at elevated temperature

Author(s):  
Lv-Yi Cheng ◽  
Run-Zi Wang ◽  
Ji Wang ◽  
Shun-Peng Zhu ◽  
Peng-Cheng Zhao ◽  
...  
2013 ◽  
Vol 470 ◽  
pp. 581-584 ◽  
Author(s):  
Hong Xu ◽  
Wei Wei Zhang ◽  
Karl Maile

The fatigue tests with 16 hours hold time have been conducted for two rotor steels, 1CrMoV and 2CrMoNiVW at 550°C to investigate their creep-fatigue interaction behaviors, as well as those without hold time for contrast. And two life prediction methods are used to correlate the present creep-fatigue life data. It is shown that a significant reduction in fatigue life is observed with hold time in tension, and it is also observed that 1CrMoV steel exhibits a higher creep-fatigue life than 2CrMoNiVW when strain hold time is 16 hours, and 2CrMoNiVW seems to be more sensitive to hold time influence. In addition, both methods could give satisfactory creep-fatigue life predictions, but with their own limitations.


Author(s):  
William J. O’Donnell ◽  
Amy B. Hull ◽  
Shah Malik

Since the 1980s, the ASME Code has made numerous improvements in elevated-temperature structural integrity technology. These advances have been incorporated into Section II, Section VIII, Code Cases, and particularly Subsection NH of Section III of the Code, “Components in Elevated Temperature Service.” The current need for designs for very high temperature and for Gen IV systems requires the extension of operating temperatures from about 1400°F (760°C) to about 1742°F (950°C) where creep effects limit structural integrity, safe allowable operating conditions, and design life. Materials that are more creep and corrosive resistant are needed for these higher operating temperatures. Material models are required for cyclic design analyses. Allowable strains, creep fatigue and creep rupture interaction evaluation methods are needed to provide assurance of structural integrity for such very high temperature applications. Current ASME Section III design criteria for lower operating temperature reactors are intended to prevent through-wall cracking and leaking and corresponding criteria are needed for high temperature reactors. Subsection NH of Section III was originally developed to provide structural design criteria and limits for elevated-temperature design of Liquid-Metal Fast Breeder Reactor (LMFBR) systems and some gas-cooled systems. The U.S. Nuclear Regulatory Commission (NRC) and its Advisory Committee for Reactor Safeguards (ACRS) reviewed the design limits and procedures in the process of reviewing the Clinch River Breeder Reactor (CRBR) for a construction permit in the late 1970s and early 1980s, and identified issues that needed resolution. In the years since then, the NRC, DOE and various contractors have evaluated the applicability of the ASME Code and Code Cases to high-temperature reactor designs such as the VHTGRs, and identified issues that need to be resolved to provide a regulatory basis for licensing. The design lifetime of Gen IV Reactors is expected to be 60 years. Additional materials including Alloy 617 and Hastelloy X need to be fully characterized. Environmental degradation effects, especially impure helium and those noted herein, need to be adequately considered. Since cyclic finite element creep analyses will be used to quantify creep rupture, creep fatigue, creep ratcheting and strain accumulations, creep behavior models and constitutive relations are needed for cyclic creep loading. Such strain- and time-hardening models must account for the interaction between the time-independent and time-dependent material response. This paper describes the evolving structural integrity evaluation approach for high temperature reactors. Evaluation methods are discussed, including simplified analysis methods, detailed analyses of localized areas, and validation needs. Regulatory issues including weldment cracking, notch weakening, creep fatigue/creep rupture damage interactions, and materials property representations for cyclic creep behavior are also covered.


1996 ◽  
Vol 217-222 ◽  
pp. 1355-1358
Author(s):  
S.C. Sharma ◽  
Rathnakar Kamath ◽  
B.M. Girish ◽  
B.R. Vinai Babu

2018 ◽  
Vol 5 (7) ◽  
pp. 076513 ◽  
Author(s):  
Biao Ding ◽  
Weili Ren ◽  
Jianchao Peng ◽  
Yunbo Zhong ◽  
Fei Li ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 651
Author(s):  
Jianxing Mao ◽  
Zhixing Xiao ◽  
Dianyin Hu ◽  
Xiaojun Guo ◽  
Rongqiao Wang

The creep-fatigue crack growth problem remains challenging since materials exhibit different linear and nonlinear behaviors depending on the environmental and loading conditions. In this paper, we systematically carried out a series of creep-fatigue crack growth experiments to evaluate the influence from temperature, stress ratio, and dwell time for the nickel-based superalloy GH4720Li. A transition from coupled fatigue-dominated fracture to creep-dominated fracture was observed with the increase of dwell time at 600 °C, while only the creep-dominated fracture existed at 700 °C, regardless of the dwell time. A concise binomial crack growth model was constructed on the basis of existing phenomenal models, where the linear terms are included to express the behavior under pure creep loading, and the nonlinear terms were introduced to represent the behavior near the fracture toughness and during the creep-fatigue interaction. Through the model implementation and validation of the proposed model, the correlation coefficient is higher than 0.9 on ten out of twelve sets of experimental data, revealing the accuracy of the proposed model. This work contributes to an enrichment of creep-fatigue crack growth data in the typical nickel-based superalloy at elevated temperatures and could be referable in the modeling for damage tolerance assessment of turbine disks.


Sign in / Sign up

Export Citation Format

Share Document