Silk fibroin and poly-caprolactone vascular grafts tested in vitro and in vivo mimic natural vessel

Author(s):  
S.G. Kim ◽  
A.R. Park ◽  
Y.H. Park ◽  
H.J. Kim ◽  
M.K. Kim ◽  
...  
2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Derya Aytemiz ◽  
Yu Suzuki ◽  
Tomoko Shindo ◽  
Toshiki Saotome ◽  
Ryou Tanaka ◽  
...  

2015 ◽  
Vol 23 (10) ◽  
pp. 924-936 ◽  
Author(s):  
A. Reum Park ◽  
Young-Hwan Park ◽  
Hyun Jeong Kim ◽  
Min-Keun Kim ◽  
Seong-Gon Kim ◽  
...  

2015 ◽  
Vol 54 ◽  
pp. 101-111 ◽  
Author(s):  
Valentina Catto ◽  
Silvia Farè ◽  
Irene Cattaneo ◽  
Marina Figliuzzi ◽  
Antonio Alessandrino ◽  
...  

2020 ◽  
Author(s):  
Wenhao Zhou ◽  
Teng Zhang ◽  
Jianglong Yan ◽  
QiYao Li ◽  
Panpan Xiong ◽  
...  

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 713
Author(s):  
Shu Fang ◽  
Ditte Gry Ellman ◽  
Ditte Caroline Andersen

To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.


2018 ◽  
Vol 7 (14) ◽  
pp. 1800249 ◽  
Author(s):  
Umberto Capasso Palmiero ◽  
James C. Kaczmarek ◽  
Owen S. Fenton ◽  
Daniel G. Anderson

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3422
Author(s):  
Shuyu Zhan ◽  
Amy Paik ◽  
Felicia Onyeabor ◽  
Baoyue Ding ◽  
Sunil Prabhu ◽  
...  

Celastrol (CL), a compound isolated from Tripterygium wilfordii, possesses various bioactivities such as antitumor, anti-inflammatory and anti-obesity effects. In previous studies, we developed CL-encapsulated silk fibroin nanoparticles (CL-SFNP) with satisfactory formulation properties and in vitro cancer cytotoxicity effect. For further in vivo oral bioavailability evaluation, in this study, a simple and reliable LC-MS/MS method was optimized and validated to determine CL concentration in rat plasma. The separation of CL was performed on a C18 column (150 by 2 mm, 5 µm) following sample preparation using liquid–liquid extraction with the optimized extraction solvent of tert-butyl methylether. The assay exhibited a good linearity in the concentration range of 0.5–500 ng/mL with the lower limit of quantification (LLOQ) of 0.5 ng/mL. The method was validated to meet the requirements for bioassay with accuracy of 91.1–110.0%, precision (RSD%) less than 9.1%, extraction recovery of 63.5–74.7% and matrix effect of 87.3–101.2%. The developed method was successfully applied to the oral bioavailability evaluation of CL-SFNP. The pharmacokinetic results indicated the AUC0-∞ values of CL were both significantly (p < 0.05) higher than those for pure CL after intravenous (IV) or oral (PO) administration of equivalent CL in rats. The oral absolute bioavailability (F, %) of CL significantly (p < 0.05) increased from 3.14% for pure CL to 7.56% for CL-SFNP after dosage normalization. This study provides valuable information for future CL product development.


Cellulose ◽  
2020 ◽  
Vol 27 (9) ◽  
pp. 5179-5196
Author(s):  
Ahmad Hivechi ◽  
S. Hajir Bahrami ◽  
Ronald A. Siegel ◽  
Peiman B.Milan ◽  
Moein Amoupour

2019 ◽  
Vol Volume 14 ◽  
pp. 4261-4276 ◽  
Author(s):  
Dawei Jin ◽  
Junfeng Hu ◽  
Dekai Xia ◽  
A'li Liu ◽  
Haizhu Kuang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document