In vitro characterization and in vivo toxicity study of repaglinide loaded poly (methyl methacrylate) nanoparticles

2010 ◽  
Vol 396 (1-2) ◽  
pp. 194-203 ◽  
Author(s):  
U.M. Dhana lekshmi ◽  
G. Poovi ◽  
Narra Kishore ◽  
P. Neelakanta Reddy
RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 43915-43926
Author(s):  
Eszter Hajba-Horváth ◽  
Emese Biró ◽  
Mirella Mirankó ◽  
Andrea Fodor-Kardos ◽  
László Trif ◽  
...  

Valsartan-loaded ethyl cellulose and poly(methyl methacrylate) nanoparticles were prepared and nano spray-dried. The active agent was structurally changed in the nanoparticles, which could be advantageous in the intestinal absorption.


2014 ◽  
Vol 15 (6) ◽  
pp. 1630-1643 ◽  
Author(s):  
Nirav Khatri ◽  
Dipesh Baradia ◽  
Imran Vhora ◽  
Mohan Rathi ◽  
Ambikanandan Misra

2019 ◽  
Vol 6 (5) ◽  
pp. 182060 ◽  
Author(s):  
Kuan-Lin Ku ◽  
Yu-Shan Wu ◽  
Chi-Yun Wang ◽  
Ding-Wei Hong ◽  
Zong-Xing Chen ◽  
...  

Poly(methyl methacrylate) (PMMA) is the most frequently used bone void filler in orthopedic surgery. However, the interface between the PMMA-based cement and adjacent bone tissue is typically weak as PMMA bone cement is inherently bioinert and not ideal for bone ingrowth. The present study aims to improve the affinity between the polymer and ceramic interphases. By surface modifying nano-sized hydroxyapatite (nHAP) with ethylene glycol and poly(ɛ-caprolactone) (PCL) sequentially via a two-step ring opening reaction, affinity was improved between the polymer and ceramic interphases of PCL-grafted ethylene glycol-HAP (gHAP) in PMMA. Due to better affinity, the compressive strength of gHAP/PMMA was significantly enhanced compared with nHAP/PMMA. Furthermore, PMMA with 20 wt.% gHAP promoted pre-osteoblast cell proliferation in vitro and showed the best osteogenic activity between the composites tested in vivo . Taken together, gHAP/PMMA not only improves the interfacial adhesion between the nanoparticles and cement, but also increases the biological activity and affinity between the osteoblast cells and PMMA composite cement. These results show that gHAP and its use in polymer/bioceramic composite has great potential to improve the functionality of PMMA cement.


Author(s):  
Noraisyah Zulkawi ◽  
Kam Heng Ng ◽  
Rizi Zamberi ◽  
Swee Keong Yeap ◽  
Dilan Satharasinghe ◽  
...  

2015 ◽  
Vol 48 (06) ◽  
Author(s):  
G Antonios ◽  
H Borgers ◽  
T Pilot ◽  
V Pena ◽  
T Bayer

2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


2018 ◽  
Vol 15 (4) ◽  
pp. 564-575 ◽  
Author(s):  
Arehalli S. Manjappa ◽  
Popat S. Kumbhar ◽  
Prajakta S. Khopade ◽  
Ajit B. Patil ◽  
John I. Disouza

2019 ◽  
Vol 09 ◽  
Author(s):  
Tejas Patel ◽  
B.N. Suhagia

Background: Diabetes mellitus is major issue to public health as its prevalence is rising day by day. Synthetic agents available for the diabetic treatment are expensive or produce undesirable side effect on chronic use and some of them are not suitable during pregnancy. Herbal medicines accepted widely due to side effects and low cost. Objective: The aim of present study was to evaluate the activity of Withania coagulans extract using In-vitro and In-vivo model. Methods: Different three types of Withania coagulans extract were prepared using aqueous (W1), Alcohol (W2) and hydro-alcoholic (50:50) mixture (W3). In-vitro Anti-diabetic activity of the all three extracts evaluated using RINm5F Pancreatic beta cells.Further, n-vivo anti-diabetic evaluation performed by administering 50 mg/kg (p.o) aqueous extract for 7 days in Streptozotocin (STZ)-induced mice. Body weight of the animals was also determined to perform acute toxicity study. Results: The results of in –vitro cell based study indicated that among all three extract, aqueous extract (W1) of Withania coagulans showed potential increase in inulin release. The EC50 of the W1 (249.6 µg/L) which is compared with standard (Glibenclamide) EC50. From the results of In-vitro study, W1 subjected for acute toxicity study and the acute toxicity study results indicated LD50 of 50mg/kg. Diabetic rats treated with W1 extract at oral dose of 50 mg/kg for 7 days showed 34.17% reduction in blood glucose in comparison to untreated diabetic (STZ-induced) rats. Blood glucose levels of Standard treated (Glibenclamide) and control untreated. Conclusion: In conclusion, results of pancreatic beta cell based study showed increase in insulin release by administration of extract. Further aqueous extract (W1) was potentially reduced blood glucose level in STZ induced diabetic mice.


Sign in / Sign up

Export Citation Format

Share Document