Aqueous solubility: Simple predictive methods (in silico, in vitro and bio-relevant approaches)

2013 ◽  
Vol 453 (1) ◽  
pp. 3-11 ◽  
Author(s):  
David Elder ◽  
René Holm
Author(s):  
Markus Boel ◽  
Oscar J. Abilez ◽  
Ahmed N Assar ◽  
Christopher K. Zarins ◽  
Ellen Kuhl

Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


2020 ◽  
Author(s):  
Johannes Karges ◽  
Shi Kuang ◽  
Federica Maschietto ◽  
Olivier Blacque ◽  
Ilaria Ciofini ◽  
...  

<div>The use of photodynamic therapy (PDT) against cancer has received increasing attention overthe recent years. However, the application of the currently approved photosensitizers (PSs) is somehow limited by their poor aqueous solubility, aggregation, photobleaching and slow clearance from the body. To overcome these limitations, there is a need for the development of new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. However, these compounds generally lack significant absorption in the biological spectral window, limiting their application to treat deep-seated or large tumors. To overcome this drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E’)-4,4´-bisstyryl 2,2´-bipyridine ligands showed impressive 1- and 2-Photon absorption up to a magnitude higher than the ones published so far. While non-toxic in the dark, these compounds were found phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and be able to eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2 Photon excitation.</div>


2019 ◽  
Author(s):  
Filip Fratev ◽  
Denisse A. Gutierrez ◽  
Renato J. Aguilera ◽  
suman sirimulla

AKT1 is emerging as a useful target for treating cancer. Herein, we discovered a new set of ligands that inhibit the AKT1, as shown by in vitro binding and cell line studies, using a newly designed virtual screening protocol that combines structure-based pharmacophore and docking screens. Taking together with the biological data, the combination of structure based pharamcophore and docking methods demonstrated reasonable success rate in identifying new inhibitors (60-70%) proving the success of aforementioned approach. A detail analysis of the ligand-protein interactions was performed explaining observed activities.<br>


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2013 ◽  
Vol 999 (999) ◽  
pp. 1-15
Author(s):  
H.K. Ho ◽  
G. Nemeth ◽  
Y.R. Ng ◽  
E. Pang ◽  
C. Szantai-Kis ◽  
...  

2019 ◽  
Vol 25 (35) ◽  
pp. 3776-3783
Author(s):  
Nebojša Pavlović ◽  
Maja Đanić ◽  
Bojan Stanimirov ◽  
Svetlana Goločorbin-Kon ◽  
Karmen Stankov ◽  
...  

Background: Resveratrol was demonstrated to act as partial agonist of PPAR-γ receptor, which opens up the possibility for its use in the treatment of metabolic disorders. Considering the poor bioavailability of resveratrol, particularly due to its low aqueous solubility, we aimed to identify analogues of resveratrol with improved pharmacokinetic properties and higher binding affinities towards PPAR-γ. Methods: 3D structures of resveratrol and its analogues were retrieved from ZINC database, while PPAR-γ structure was obtained from Protein Data Bank. Docking studies were performed using Molegro Virtual Docker software. Molecular descriptors relevant to pharmacokinetics were calculated from ligand structures using VolSurf+ software. Results: Using structural similarity search method, 56 analogues of resveratrol were identified and subjected to docking analyses. Binding energies were ranged from -136.69 to -90.89 kcal/mol, with 16 analogues having higher affinities towards PPAR-γ in comparison to resveratrol. From the calculated values of SOLY descriptor, 23 studied compounds were shown to be more soluble in water than resveratrol. However, only two tetrahydroxy stilbene derivatives, piceatannol and oxyresveratrol, had both better solubility and affinity towards PPAR-γ. These compounds also had more favorable ADME profile, since they were shown to be more metabolically stable and wider distributed in body than resveratrol. Conclusion: Piceatannol and oxyresveratrol should be considered as potential lead compounds for further drug development. Although experimental validation of obtained in silico results is required, this work can be considered as a step toward the discovery of new natural and safe drugs in treatment of metabolic disorders.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


Sign in / Sign up

Export Citation Format

Share Document