In-silico simulations of advanced drug delivery systems: What will the future offer?

2013 ◽  
Vol 454 (1) ◽  
pp. 512-516 ◽  
Author(s):  
Juergen Siepmann
Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: In this review nanoscale based drug delivery systems particularly in relevance to the antiglaucoma drugs have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery, is an ideal option to target tumours and drug can be released at areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood–retinal barrier, corneal epithelium and the blood–aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us in understand the existing queries and evidence gaps and will pave way for effective design of novel ocular drug delivery systems


Author(s):  
Iman Akbarzadeh ◽  
Kamand Sedaghatnia ◽  
Mahsa Bourbour ◽  
Zahra Moghaddam ◽  
Maryam Moghtaderi ◽  
...  

Nanotechnology is making significant transformation to our world, especially in healthcare and the treatment of diseases. It is widely used in different medical applications, such as in treatment and detection. Targeting diseased cell with nanomedicines is one of the numerous applications of nanotechnology. Targeted drug delivery systems for delivering various types of drugs to specific sites are such a dynamic area in pharmaceutical biotechnology and nanotechnology. Compared to conventional drugs, nanomedicines have a higher absorption and bioavailability rate, improving efficacy and minimizing side effects. There are several drug delivery systems including metallic nanoparticles, polymers, liposomes, and microspheres, but one of the most important is the niosomes, which are produced by nonionic surfactants. Because of the amphiphilic nature and structure, hydrophilic or hydrophobic drugs can be loaded into niosome structures. Other compounds, including cholesterol, can also be applied to the niosomes' backbone to rigidize the structure. Several variables such as the type of surfactant in niosome production, the preparation method, and the hydration temperature can affect the structure of the niosomes. Nevertheless, in-silico design of drug delivery formulations requires molecular dynamic simulation tools, molecular docking, and ADME (absorption; distribution; excretion; metabolism) properties, which evaluate physicochemical features of formulation and ADME attitudes before synthesis, investigating the interaction between nano-carriers and specific targets. Hence, experimenting in-vitro and in-vivo is essential. In this review, the basic aspects of niosomes are described including their structure, characterization, preparation methods, optimization with in-silico tools, factors affecting their formation, and limitations.


2016 ◽  
Vol 147 ◽  
pp. 475-491 ◽  
Author(s):  
Mei Shao ◽  
Zahid Hussain ◽  
Hnin Ei Thu ◽  
Shahzeb Khan ◽  
Haliza Katas ◽  
...  

2020 ◽  
Vol 124 (28) ◽  
pp. 5788-5800 ◽  
Author(s):  
Belén L. Bouzo ◽  
Martín Calvelo ◽  
Manuel Martín-Pastor ◽  
Rebeca García-Fandiño ◽  
María de la Fuente

Sign in / Sign up

Export Citation Format

Share Document