In Vitro–In Silico Modeling Approach to Rationally Designed Simple and Versatile Drug Delivery Systems

2020 ◽  
Vol 124 (28) ◽  
pp. 5788-5800 ◽  
Author(s):  
Belén L. Bouzo ◽  
Martín Calvelo ◽  
Manuel Martín-Pastor ◽  
Rebeca García-Fandiño ◽  
María de la Fuente
Author(s):  
Iman Akbarzadeh ◽  
Kamand Sedaghatnia ◽  
Mahsa Bourbour ◽  
Zahra Moghaddam ◽  
Maryam Moghtaderi ◽  
...  

Nanotechnology is making significant transformation to our world, especially in healthcare and the treatment of diseases. It is widely used in different medical applications, such as in treatment and detection. Targeting diseased cell with nanomedicines is one of the numerous applications of nanotechnology. Targeted drug delivery systems for delivering various types of drugs to specific sites are such a dynamic area in pharmaceutical biotechnology and nanotechnology. Compared to conventional drugs, nanomedicines have a higher absorption and bioavailability rate, improving efficacy and minimizing side effects. There are several drug delivery systems including metallic nanoparticles, polymers, liposomes, and microspheres, but one of the most important is the niosomes, which are produced by nonionic surfactants. Because of the amphiphilic nature and structure, hydrophilic or hydrophobic drugs can be loaded into niosome structures. Other compounds, including cholesterol, can also be applied to the niosomes' backbone to rigidize the structure. Several variables such as the type of surfactant in niosome production, the preparation method, and the hydration temperature can affect the structure of the niosomes. Nevertheless, in-silico design of drug delivery formulations requires molecular dynamic simulation tools, molecular docking, and ADME (absorption; distribution; excretion; metabolism) properties, which evaluate physicochemical features of formulation and ADME attitudes before synthesis, investigating the interaction between nano-carriers and specific targets. Hence, experimenting in-vitro and in-vivo is essential. In this review, the basic aspects of niosomes are described including their structure, characterization, preparation methods, optimization with in-silico tools, factors affecting their formation, and limitations.


Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: In this review nanoscale based drug delivery systems particularly in relevance to the antiglaucoma drugs have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery, is an ideal option to target tumours and drug can be released at areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood–retinal barrier, corneal epithelium and the blood–aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us in understand the existing queries and evidence gaps and will pave way for effective design of novel ocular drug delivery systems


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 861
Author(s):  
Jacopo Cardellini ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1108
Author(s):  
Oana Craciunescu ◽  
Madalina Icriverzi ◽  
Paula Ecaterina Florian ◽  
Anca Roseanu ◽  
Mihaela Trif

Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.


Sign in / Sign up

Export Citation Format

Share Document