Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile

2013 ◽  
Vol 457 (2) ◽  
pp. 503-509 ◽  
Author(s):  
Armin Hosseini ◽  
Martin Körber ◽  
Roland Bodmeier
Author(s):  
Naveen Goyal ◽  
Anil Kumar

Objective: The main objective of this research work was to design, prepare and evaluate extended release (ER) tablets of anti-asthmatic drugs (salbutamol sulphate and theophylline) by direct compression method using diverse ratios of hydroxypropyl methylcellulose (HPMC K100M) and ethyl cellulose (EC) along with some other excipients.Methods: Extended-release matrix tablets of salbutamol sulphate and theophylline were successfully fabricated by direct compression method and coded the formulations as F1 to F7 depending on the ratios of modified polymers. The core tablets composed of hydrophilic polymers of various ratios that allow the discharge of drugs at a controlled rate after coming in contact with the aqueous medium. The designed tablets were subjected to various assessment parameters i.e. friability test, hardness test, drug content consistency and In vitro dissolution tests.Results: Prepared formulations were subjected to various assessment parameters and the findings obtained were within the prescribed limit. To perform the in vitro drug dissolution tests of fabricated tablets, the calibration plots of pure drugs using various solvents i.e. 0.1N HCl, phosphate buffer (pH 6.8) and distilled water were plotted. Dosage forms F1-F7 containing ethyl cellulose and HPMC K100M in various concentration demonstrates the prolonged medications discharge for up to 8 h, among these formulations, F6 shows 95.32±0.24 % for salbutamol sulphate and 94.19±0.39 % for theophylline release at the end of 8 h. This finding reveals that a particular window of concentrations of ethylcellulose and HPMC K100M was capable of providing prolonged drugs discharge.Conclusion: The results obtained in this research work clearly showed a promising potential of extended-release tablets containing a specific ratio of HPMC K100M and ethylcellulose as a release rate controlling polymers for effective treatment of asthma and chronic obstructive pulmonary diseases (COPD).


Author(s):  
Sakthikumar T ◽  
Rajendran N N ◽  
Natarajan R

The present study was aimed to develop an extended release tablet of metoprolol Succinate for the treatment of hypertension.  Four extended release formulations F1-F4 were developed using varying proportions of hydroxylpropyl-methylcellulose K100M, sodium carboxy methyl cellulose and Eudragit L30 D55 by wet granulation. Five extended release formulations F5-F9 containing HPMC K100M and HPMC 5 cps in varying concentration were developed by direct compression. The physicochemical and in vitro release characteristics of all the formulations were investigated and compared. Two formulations, F7 and F8 have shown not more 25% drug release  in 1st h, 20%-40% drug release at 4th hour, 40%-60% drug release at 8th hour and not less than 80% at 20th hour and the release pattern conform with USP specification for 24 hours extended release formulation. It can be conclusively stated that optimum concentration of HPMC K100M (58%-65%) by direct compression method can yield an extended release of metoprolol succinate for 24 hours.


Bio-Research ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
BB Mohammed ◽  
EJ John ◽  
NK Ajuji

Tablets at present, remain the most preferred oral dosage form because of many advantages they offer to formulators as well as physicians and patients. The objective of this work was to determine the effect of co-processing on the disintegration and drug-release profile of ibuprofen tablets prepared from a co-processed excipient. The co-processed excipient (CE) containing lactose, gelatin and mucin in the ratio 90:9:1 was prepared using co-fusion. The excipient was evaluated for its physicochemical properties and then used to formulate tablets with the addition of a disintegrant by direct compression. The tablets were evaluated for their tablet properties and compared with tablets prepared with cellactose- 80® (CEL) and spray dried lactose® (SDL) and a physical mix (PM) of the co-processed ingredient. Results from evaluation of CE showed that flow rate, angle of repose, Carr’s index and Hausner’s ratio were 5.28 g/sec, 20.30o, 23.75 % and 1.31, respectively. Tablets prepared with CE had friability (0%), crushing strength (5.25) KgF, disintegration time (3 mins) and T50% (2 mins). For CEL, friability (0.4 %), crushing strength (7.25) KgF, disintegration time (1 min) and T50% (2 mins); SDL, friability (1.57 %), crushing strength (7.50) KgF, disintegration time (4 mins) and T50% (2 mins) and PM, friability (2.38 %), crushing strength (5.00) KgF, disintegration time (1 min) and T50% (2 mins). In conclusion, the disintegration time and drug release profile for CE was not superior but compared favorably with CEL, SDL and PM.  


2018 ◽  
Vol 8 (5-s) ◽  
pp. 235-239
Author(s):  
NILESH M MAHAJAN ◽  
Kalyanee Wanaskar ◽  
Yogesh Bhutada ◽  
Raju Thenge ◽  
Vaibhav Adhao

The aim of present study is to formulate and evaluate extended release matrix tablet of Nateglinide by direct compression method using different polymer like HPMC K4 and HPMC K15. Matrix tablet of nateglidine were prepared in combination with the polymer HPMC K4, HPMC K15, along with the excipients and the formulations were evaluated for tablet properties and in vitro drug release studies. Nateglinide matrix tablet prepared by using polymer such as HPMC K4 and HPMC K15,  it was found that HPMC K15 having higher viscosity as compare to HPMC K4 therefore different concentration of polymer were studied to extend the drug release up to 12 h. The tablets of Nateglinide prepared by direct compression had acceptable physical characteristics and satisfactory drug release. The study demonstrated that as far as the formulations were concerned, the selected polymers proved to have an acceptable flexibility in terms of in-vitro release profile. In present the study the percent drug release for optimize batch was found to 94.62%.  Hence it can be conclude that Nateglinide extended release matrix tablet can prepared by using HPMC. The swollen tablet also maintains its physical integrity during the drug release study Keywords: Tablet, in-vitro drug release, Nateglinide, HPMC


2016 ◽  
Vol 511 (1) ◽  
pp. 659-668 ◽  
Author(s):  
Satu Lakio ◽  
Pirjo Tajarobi ◽  
Håkan Wikström ◽  
Magnus Fransson ◽  
Johan Arnehed ◽  
...  

Cellulose ◽  
2019 ◽  
Vol 27 (3) ◽  
pp. 1573-1589 ◽  
Author(s):  
Shiva Homaee Borujeni ◽  
Seyedeh Zahra Mirdamadian ◽  
Jaleh Varshosaz ◽  
Azade Taheri

2017 ◽  
Vol 13 (1) ◽  
pp. 39 ◽  
Author(s):  
D. Lynn Kirkpatrick, PhD ◽  
William K. Schmidt, PhD ◽  
Ricardo Morales, BSc ◽  
John Cremin, PhD ◽  
Julie Seroogy, BSc ◽  
...  

Objective: The need for pain medication which will not lead to abuse is well recognized. Ensysce has designed prodrug analogs of the commonly used pain medications including hydromorphone, oxycodone (OC), hydrocodone, and morphine that limit their use to oral delivery, two of which are in clinical development. This study was undertaken to demonstrate that PF614, an extended-release prodrug of OC, allows the release of OC as designed when delivered orally, yet it resists ex vivo extraction with household chemicals and is pharmacologically inactive when administered by nonoral routes (nasal and parenteral), thereby substantially reducing its intravenous (IV) and intranasal abuse potential.Methods: In vitro and in vivo methods were used to determine release of OC from PF614 and to show potential μ-opioid receptor activity. Plasma and cerebral spinal fluid levels of OC were evaluated following in vivo IV administration of PF614 in rats. In vitro extraction of OC from PF614 was explored using enzymes, common solvents, and household chemicals at room temperature and elevated temperature over time to determine release of OC from the prodrug.Results: PF614 was stable with in vitro exposure to human plasma, saliva, and liver microsomes or culinary enzyme preparations. PF614 was stable (≥90 percent remaining as intact prodrug) under all room temperature conditions evaluated for 24 hours. At 80 °C for 1 hour, no OC was released. Incubation at 80 °C for 24 hours in vinegar or vodka produced a conversion to OC of 6 percent. Incubation with trypsin at 37 °C converted PF614 approximately stoichiometric to OC with half-life of 4 hours. PF614's penetration of the central nervous system was 83-fold lower than OC and it had a 6.5-fold reduced potency as a μ-opioid agonist. Finally, oral PF614 delivers OC into plasma with an extended-release profile in dogs (reduced Cmax; delayed Tmax).Conclusions: The Bio-Activated Molecular Delivery prodrug design limits the use of PF614 to the intended oral route of delivery with reduced potential for IV or nasal abuse, as it cannot be activated intravenously or nasally to provide an active opioid. Unlike existing opioid formulations, the extended-release profile of PF614 cannot be accelerated by chewing or ex vivo extraction to pharmacologically active substances.


2004 ◽  
Vol 93 (4) ◽  
pp. 1886-1890 ◽  
Author(s):  
Yaw-Bin Huang ◽  
Yi-Hung Tsai ◽  
Wan-Chiech Yang ◽  
Jui-Sheng Chang ◽  
Pao-Chu Wu

Sign in / Sign up

Export Citation Format

Share Document