Size-exclusive effect of nanostructured lipid carriers on oral drug delivery

2016 ◽  
Vol 511 (1) ◽  
pp. 524-537 ◽  
Author(s):  
Huipeng Li ◽  
Minglei Chen ◽  
Zhigui Su ◽  
Minjie Sun ◽  
Qineng Ping
RSC Advances ◽  
2016 ◽  
Vol 6 (87) ◽  
pp. 84164-84176 ◽  
Author(s):  
Huipeng Li ◽  
Nida El Islem Guissi ◽  
Zhigui Su ◽  
Qineng Ping ◽  
Minjie Sun

Nano-structured lipid carriers (NLCs) can be changed into nanostructured lipid carriers (NLCs).


2021 ◽  
Author(s):  
Shilpa Raval ◽  
Parva Jani ◽  
Pravin Patil ◽  
Parth Thakkar ◽  
Krutika Sawant

Aim: The work describes enhanced bioavailability of paliperidone palmitate through transdermal delivery using nanostructured lipid carriers (NLC). Materials & methods: NLCs were formulated by nanoprecipitation method followed by incorporation in transdermal patch and physicochemical characterization. Results: NLCs showed high percentage entrapment efficiency of 83.44 ± 0.8%, drug loading of 24.75 ± 1.10% (w/w), particle size of 173.8 ± 3.25 nm, polydispersity index of 0.143 ± 0.05 and zeta potential of -15.9 ± 0.75 mV. In vitro and ex vivo studies indicated zero-order controlled drug release from NLCs and transdermal patch up to 48 h. Pharmacokinetic studies indicated 1.76-fold enhanced bioavailability by transdermal route as compared with oral drug delivery. Conclusion: From the results, it was concluded that drug-loaded NLCs-transdermal patch is promising drug delivery system for poorly bioavailable drugs.


Author(s):  
Neslihan Üstündağ Okur ◽  
Panoraia I. Siafaka ◽  
Evren Homan Gökçe

Background: The oral application of drugs is the most popular route through which the systemic effect can be achieved. Nevertheless, oral administration is limited by difficulties related to physicochemical properties of the drug molecule, including low aqueous solubility, instability, low permeability, and rapid metabolism, all of which result in low and irregular oral bioavailability. Objective: The enhancement of oral bioavailability of drug molecules with such properties could lead to extreme complications in drug preparations. Oral lipid based nanoparticles seems to possess extensive advantages due to their ability to increase the solubility, simplifying intestinal absorption and decrease or eradicate the effect of food on the absorption of low soluble, lipophilic drugs and therefore improving the oral bioavailability. Method: The present review provides a summary of the general theory of lipid based nanoparticles, their preparation methods as well as their oral applications. Moreover, the oral drug delivery challenges are discussed. Results: According to this review, the most frequent types of lipid-based nanoparticle, the solid lipid nanoparticles and nanostructured lipid carriers are potent oral carriers due to their ability to penetrate the oral drug adsorption barriers. Moreover, such lipid nanoparticles can be beneficial drug carriers against cardiovascular risk disorders as diabetes, hypertension etc. Conclusion: In this review, the most current and promising studies involving Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as oral drug carriers are reported aiming to assist researchers who focus their research on lipid based nanoparticles.


Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


2015 ◽  
Vol 21 (15) ◽  
pp. 2021-2036 ◽  
Author(s):  
Himani Kapahi ◽  
Nikhat Khan ◽  
Ankur Bhardwaj ◽  
Neeraj Mishra

2012 ◽  
Vol 9 (2) ◽  
pp. 213-217 ◽  
Author(s):  
Mehdi Rahimi ◽  
Hamid Mobedi ◽  
Aliasghar Behnamghader ◽  
Alireza Nateghi Baygi ◽  
Houri Mivehchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document