Solid Lipid Nanoparticles: Special Feature, Bioavailability Enhancement and Recent Advances in the Oral Drug Delivery

2015 ◽  
Vol 05 (999) ◽  
pp. 1-1
Author(s):  
Syed Sarim Imam ◽  
Mohammad Aqil ◽  
Yasmin Sultana
Author(s):  
S. Khaleel Basha ◽  
R. Dhandayuthabani ◽  
M. Syed Muzammil ◽  
V. Sugantha Kumari

2021 ◽  
Vol 11 (1-s) ◽  
pp. 162-169
Author(s):  
Vasu Deva Reddy Matta

Solid lipid nanoparticles (SLNs) are in submicron size range nanoparticles and are made of biocompatible and biodegradable materials (mainly composed of lipids and surfactants) capable of incorporating both lipophilic and hydrophilic drugs. SLNs are also considered as substitute to other colloidal drug systems, also used as controlled systems and targeted delivery. SLNs can be considered as an alternative for oral drug delivery vehicle to improve the oral bioavailability of drugs, associated reduction of drug toxicity and stability of drug in both GIT and plasma. There are different techniques used for the preparation of SLNs. Generally, the preparation of SLNs and any other nanoparticle system necessitates a dispersed system as precursor; otherwise particles are produced through the use of a particular instrumentation. This review provides the summary on the techniques or methods used for the development of SLNs of poorly water soluble drugs for improved drug delivery. Keywords: Solid lipid nanoparticles, controlled delivery, precursor, techniques.


2020 ◽  
Vol 10 (3) ◽  
pp. 208-224
Author(s):  
Manish Gautam ◽  
Madhu Verma ◽  
Iti Chauhan ◽  
Mohd. Yasir ◽  
Alok Pratap Singh ◽  
...  

Background: The high molecular weight and increasing lipophilicity of drug face many problems starting from the drug development to formulation and conduction of pharmacological, toxicological and pharmacokinetic studies to its biological application. To overcome this problem, nano-sized formulations are in trend recently. The use of Solid lipid nanoparticles (SLNs) offers new insight into the formulation of the poor soluble and low bioavailable drug. Objective: The study aimed to investigate the literature concerning the development of SLNs for oral drug delivery of poorly soluble drugs, with a view survey the various methods of manufacturing and evaluation of formulation of SLNs and future prospects of SLNs and application of SLNs in oral delivery systems. Conclusion: Oral drug delivery is looking ahead progressively into newer directions due to the realization of various poor performance limiting factors such as reduced drug solubility or absorption, rapid metabolism, high actuation in plasma level of drug and variability caused due to food effect. These play a vital role in disappointing in vivo results, which leads in the failure of the conventional delivery system. Since the last decade, oral drug delivery has taken a new dimension with the increasing application of SLNs as a carrier for the delivery of poorly water-soluble or lipophilic drugs. The site-specific and sustained release effect of the drug is better achieved by using SLNs. This review highlights the various pros and cons, manufacturing techniques, characterization, and future prospects of SLNs in oral drug delivery systems.


Author(s):  
Neslihan Üstündağ Okur ◽  
Panoraia I. Siafaka ◽  
Evren Homan Gökçe

Background: The oral application of drugs is the most popular route through which the systemic effect can be achieved. Nevertheless, oral administration is limited by difficulties related to physicochemical properties of the drug molecule, including low aqueous solubility, instability, low permeability, and rapid metabolism, all of which result in low and irregular oral bioavailability. Objective: The enhancement of oral bioavailability of drug molecules with such properties could lead to extreme complications in drug preparations. Oral lipid based nanoparticles seems to possess extensive advantages due to their ability to increase the solubility, simplifying intestinal absorption and decrease or eradicate the effect of food on the absorption of low soluble, lipophilic drugs and therefore improving the oral bioavailability. Method: The present review provides a summary of the general theory of lipid based nanoparticles, their preparation methods as well as their oral applications. Moreover, the oral drug delivery challenges are discussed. Results: According to this review, the most frequent types of lipid-based nanoparticle, the solid lipid nanoparticles and nanostructured lipid carriers are potent oral carriers due to their ability to penetrate the oral drug adsorption barriers. Moreover, such lipid nanoparticles can be beneficial drug carriers against cardiovascular risk disorders as diabetes, hypertension etc. Conclusion: In this review, the most current and promising studies involving Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as oral drug carriers are reported aiming to assist researchers who focus their research on lipid based nanoparticles.


2018 ◽  
Vol 10 (5) ◽  
pp. 17 ◽  
Author(s):  
Rita R. Lala ◽  
Amol S. Shinde ◽  
Nikita Y. Nandvikar

Combination therapy for cancer treatment is accepted worldwide due to the generation of synergistic anticancer effects; restrain in multidrug resistance (MDR) or tumor resistance by different mechanisms of action and minimization of dose-dependent toxicity. Recently developed Solid lipid nanoparticles (SLNs) are matrix composed of lipid which is solid at both room and body temperature and hence it is as an alternative to other nanocarrier systems. SLNs after oral administration get absorbed by lymphatic pathway due to stimulation of chylomicron formation. Thus, it avoids all consequences related to an oral drug delivery system and improves oral bioavailability. SLNs based combination drug delivery to tumor tissues reduces the problems associated with chemotherapy. The targeted and sustained delivery of chemotherapeutic agents reduces the dose by achieving high concentrations at the target site, without altering the normal tissues. In this article, we have reviewed and focused on SLNs as a drug delivery system; ingredients used in formulating SLNs and developed two or more drugs in a single formulation of SLNs as drug delivery. This article also focuses on the fact that SLNs as a combination drug delivery provides an attractive approach in future prevention and beneficial for the treatment of cancer by increasing its therapeutic efficacy.


Sign in / Sign up

Export Citation Format

Share Document