scholarly journals Cyanine derivative as a suitable marker for thermosensitive in situ gelling delivery systems: In vitro and in vivo validation of a sustained buccal drug delivery

2017 ◽  
Vol 534 (1-2) ◽  
pp. 128-135 ◽  
Author(s):  
Ni Zeng ◽  
Johanne Seguin ◽  
Pierre-Louis Destruel ◽  
Gilles Dumortier ◽  
Marc Maury ◽  
...  
Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 360
Author(s):  
Pierre-Louis Destruel ◽  
Ni Zeng ◽  
Françoise Brignole-Baudouin ◽  
Sophie Douat ◽  
Johanne Seguin ◽  
...  

Mydriasis is required prior to many eye examinations and ophthalmic surgeries. Nowadays, phenylephrine hydrochloride (PHE) and tropicamide (TPC) are extensively used to induce mydriasis. Several pharmaceutic dosage forms of these two active ingredients have been described. However, no optimal therapeutic strategy has reached the market. The present work focuses on the formulation and evaluation of a mucoadhesive ion-activated in situ gelling delivery system based on gellan gum and hydroxyethylcellulose (HEC) for the delivery of phenylephrine and tropicamide. First, in vitro drug release was studied to assess appropriate sustained drug delivery on the ocular surface region. Drug release mechanisms were explored and explained using mathematical modeling. Then, in situ gelling delivery systems were visualized using scanning electron microscopy illustrating the drug release phenomena involved. Afterward, cytotoxicity of the developed formulations was studied and compared with those of commercially available eye drops. Human epithelial corneal cells were used. Finally, mydriasis intensity and kinetic was investigated in vivo. Mydriasis pharmacodynamics was studied by non-invasive optical imaging on vigilant rabbits, allowing eye blinking and nasolacrimal drainage to occur physiologically. In situ gelling delivery systems mydriasis profiles exhibited a significant increase of intensity and duration compared with those of conventional eye drops. Efficient mydriasis was achieved following the administration of a single drop of in situ gel reducing the required amount of administered active ingredients by four- to eight-fold compared with classic eye drop regimen.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1108
Author(s):  
Oana Craciunescu ◽  
Madalina Icriverzi ◽  
Paula Ecaterina Florian ◽  
Anca Roseanu ◽  
Mihaela Trif

Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.


2007 ◽  
Vol 25 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Heiko Kranz ◽  
Erol Yilmaz ◽  
Gayle A. Brazeau ◽  
Roland Bodmeier

2012 ◽  
Vol 430 (1-2) ◽  
pp. 276-281 ◽  
Author(s):  
Yiguang Jin ◽  
Yanju Lian ◽  
Lina Du ◽  
Shuangmiao Wang ◽  
Chang Su ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1285
Author(s):  
Louise Van Gheluwe ◽  
Igor Chourpa ◽  
Coline Gaigne ◽  
Emilie Munnier

Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.


Sign in / Sign up

Export Citation Format

Share Document