Efficient optimization of high-dose formulation of novel lyophilizates for dry powder inhalation by the combination of response surface methodology and time-of-flight measurement

2020 ◽  
Vol 581 ◽  
pp. 119255
Author(s):  
Ryo Ohori ◽  
Sakurako Kiuchi ◽  
Shintaro Sugiyama ◽  
Kahori Miyamoto ◽  
Tomomi Akita ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 117
Author(s):  
Muhammad Ali Inam ◽  
Rizwan Khan ◽  
Ick Tae Yeom ◽  
Abdul Salam Buller ◽  
Muhammad Akram ◽  
...  

Coprecipitation-adsorption plays a significant role during coagulation-flocculation-sedimentation (C/F/S) of antimony (Sb) in water. This work uses a Box–Behnken statistical experiment design (BBD) and response surface methodology (RSM) to investigate the effects of major operating variables such as initial Sb(III, V) concentration (100–1000 µg/L), ferric chloride (FC) dose (5–50 mg/L), and pH (4–10) on redox Sb species. Experimental data of Sb(III, V) removal were used to determine response function coefficients. The model response value (Sb removal) showed good agreement with the experimental results. FC showed promising coagulation behavior of both Sb species under optimum pH (6.5–7.5) due to its high affinity towards Sb species and low residual Fe concentration. However, a high dose of 50 mg/L of FC is required for the maximum (88–93%) removal of Sb(V), but also for the highest (92–98%) removal of low initial concentrations of Sb(III). Furthermore, BBD and RSM were found to be reliable and feasible for determining the optimum conditions for Sb removal from environmental water samples by a C/F/S process. This work may contribute to a better understanding and prediction of the C/F/S behavior of Sb(III, V) species in aqueous environments, to reduce potential risks to humans.



Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 645
Author(s):  
Imco Sibum ◽  
Paul Hagedoorn ◽  
Carel O. Botterman ◽  
Henderik W. Frijlink ◽  
Floris Grasmeijer

In recent years there has been increasing interest in the pulmonary delivery of high dose dry powder drugs, such as antibiotics. Drugs in this class need to be dosed in doses far over 2.5 mg, and the use of excipients should therefore be minimized. To our knowledge, the effect of the automatic filling of high dose drug formulations on the maximum dose that can be filled in powder inhalers, and on the dispersion behavior of the powder, have not been described so far. In this study, we aimed to investigate these effects after filling with an Omnidose, a vacuum drum filler. Furthermore, the precision and accuracy of the filling process were investigated. Two formulations were used—an isoniazid formulation we reported previously and an amikacin formulation. Both formulations could be precisely and accurately dosed in a vacuum pressure range of 200 to 600 mbar. No change in dispersion was seen after automatic filling. Retention was decreased, with an optimum vacuum pressure range found from 400 to 600 mbar. The nominal dose for amikacin was 57 mg, which resulted in a fine particle dose of 47.26 ± 1.72 mg. The nominal dose for isoniazid could be increased to 150 mg, resulting in a fine particle dose of 107.35 ± 13.52 mg. These findings may contribute to the understanding of the upscaling of high dose dry powder inhalation products.



1999 ◽  
Vol 55 (2) ◽  
pp. 131-138 ◽  
Author(s):  
J. B. Lecaillon ◽  
G. Kaiser ◽  
M. Palmisano ◽  
J. Morgan ◽  
G. Della Cioppa


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 632
Author(s):  
Kahori Miyamoto ◽  
Misato Yanagisawa ◽  
Hiroaki Taga ◽  
Hiromichi Yamaji ◽  
Tomomi Akita ◽  
...  

It has been previously reported that active vitamin D3 (VD3) is a candidate drug that can repair alveolar damage in chronic obstructive pulmonary disease at a very low dose. We herein report the optimization of a very low-dose formulation of VD3 for dry powder inhalation by a simple method based on time-of-flight (TOF) theory. As the preparation content of VD3 is very low, aerodynamic particle size distribution cannot be measured by pharmacopeial methods that require quantification of the main drug. Thus, a simple method based on TOF theory, which can measure aerodynamic particle size distribution without quantification, was used. The optimized formulation for an inhalation system using a lyophilized cake contained phenylalanine as the excipient (VD3 1 μg/vial + phenylalanine 0.3 mg/vial) and showed high performance with fine particle fraction ≤ 3 μm = 47.2 ± 4.4%. The difference between the results of pharmacopeial methods and simple method was examined using the formulation containing 10 µg/vial of VD3 and was within 5.0%. The preparation is expected to efficiently deliver VD3 to the lungs. Our simple method can optimize dry powder inhalation formulations more easily and rapidly even when the content of the main drug in a preparation is very low.





Sign in / Sign up

Export Citation Format

Share Document