Compression chamber volume analysis for co-rotating scroll compressors

2020 ◽  
Vol 112 ◽  
pp. 172-188
Author(s):  
Ahmad Mojiri ◽  
Marjan Mikel ◽  
Tracie Barber
Author(s):  
Ping Wang ◽  
Lewis Linker ◽  
James Collier ◽  
Gary Shenk ◽  
Robert Koroncai ◽  
...  

Author(s):  
Serhii Kovalov

The expediency of using vehicles of liquefied petroleum gas as a motor fuel, as com-pared with traditional liquid motor fuels, in particular with diesel fuel, is shown. The advantages of converting diesel engines into gas ICEs with forced ignition with respect to conversion into gas diesel engines are substantiated. The analysis of methods for reducing the compression ratio in diesel engines when converting them into gas ICEs with forced ignition has been carried out. It is shown that for converting diesel engines into gas ICEs with forced ignition, it is advisable to use the Otto thermo-dynamic cycle with a decrease in the geometric degree of compression. The choice is grounded and an open combustion chamber in the form of an inverted axisymmetric “truncated cone” is developed. The proposed shape of the combustion chamber of a gas internal combustion engine for operation in the LPG reduces the geometric compression ratio of D-120 and D-144 diesel engines with an unseparated spherical combustion chamber, which reduces the geometric compression ratio from ε = 16,5 to ε = 9,4. The developed form of the combustion chamber allows the new diesel pistons or diesel pistons which are in operation to be in operation to be refined, instead of making special new gas pistons and to reduce the geometric compression ratio of diesel engines only by increasing the combustion chamber volume in the piston. This method of reducing the geometric degree of compression using conventional lathes is the most technologically advanced and cheap, as well as the least time consuming. Keywords: self-propelled chassis SSh-2540, wheeled tractors, diesel engines D-120 and D-144, gas engine with forced ignition, liquefied petroleum gas (LPG), compression ratio of the internal com-bustion engine, vehicles operating in the LPG.


Author(s):  
A. P. Shaikin ◽  
I. R. Galiev

The article analyzes the influence of chemical composition of hythane (a mixture of natural gas with hydrogen) on pressure in an engine combustion chamber. A review of the literature has showed the relevance of using hythane in transport energy industry, and also revealed a number of scientific papers devoted to studying the effect of hythane on environmental and traction-dynamic characteristics of the engine. We have studied a single-cylinder spark-ignited internal combustion engine. In the experiments, the varying factors are: engine speed (600 and 900 min-1), excess air ratio and hydrogen concentration in natural gas which are 29, 47 and 58% (volume).The article shows that at idling engine speed maximum pressure in combustion chamber depends on excess air ratio and proportion hydrogen in the air-fuel mixture – the poorer air-fuel mixture and greater addition of hydrogen is, the more intense pressure increases. The positive effect of hydrogen on pressure is explained by the fact that addition of hydrogen contributes to increase in heat of combustion fuel and rate propagation of the flame. As a result, during combustion, more heat is released, and the fuel itself burns in a smaller volume. Thus, the addition of hydrogen can ensure stable combustion of a lean air-fuel mixture without loss of engine power. Moreover, the article shows that, despite the change in engine speed, addition of hydrogen, excess air ratio, type of fuel (natural gas and gasoline), there is a power-law dependence of the maximum pressure in engine cylinder on combustion chamber volume. Processing and analysis of the results of the foreign and domestic researchers have showed that patterns we discovered are applicable to engines of different designs, operating at different speeds and using different hydrocarbon fuels. The results research presented allow us to reduce the time and material costs when creating new power plants using hythane and meeting modern requirements for power, economy and toxicity.


2009 ◽  
Vol 37 (1) ◽  
pp. 25-28 ◽  
Author(s):  
J. Lelie ◽  
J. M. Kerst ◽  
E. Vorm ◽  
A. E. G. Kr. Borne

Sign in / Sign up

Export Citation Format

Share Document