Effect of the clump size for bonded particle model on the uniaxial and tensile strength ratio of rock

Author(s):  
João Manso ◽  
João Marcelino ◽  
Laura Caldeira
2016 ◽  
Vol 723 ◽  
pp. 316-321
Author(s):  
Fu Xian Zhu ◽  
Zhong De Shan ◽  
Fen Liu

The micro-strength of sand mold is analyzed based on bonded-particle model (BPM) due to the reason that the strength of sand mold largely influences the final casting properties. In this study, the stress and the strength as well as the stiffness parameters of the binding bridge between the sands are obtained firstly by establishing the equivalent micro-beam model of the binding bridge between the sands. Then, the tensile strength formula of Sand Mold is derived according to the idea packing shape of particle, which is then used for discussing the relationship between the tensile strength with the sand mesh and the mass fraction of binder. At last, the effects of the sand mesh and mass fraction of binder on the tensile strength of the Sand Mold are analyzed quantitatively, which shows the great agreement with the macroscopic experimental results of the sand mold strength.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3273
Author(s):  
Józef Horabik ◽  
Maciej Bańda ◽  
Grzegorz Józefaciuk ◽  
Agnieszka Adamczuk ◽  
Cezary Polakowski ◽  
...  

Wood pellets are an important source of renewable energy. Their mechanical strength is a crucial property. In this study, the tensile strength of pellets made from oak, pine, and birch sawdust with moisture contents of 8% and 20% compacted at 60 and 120 MPa was determined in a diametral compression test. The highest tensile strength was noted for oak and the lowest for birch pellets. For all materials, the tensile strength was the highest for a moisture content of 8% and 120 MPa. All pellets exhibited a ductile breakage mode characterised by a smooth and round stress–deformation relationship without any sudden drops. Discrete element method (DEM) simulations were performed to check for the possibility of numerical reproduction of pelletisation of the sawdust and then of the pellet deformation in the diametral compression test. The pellet breakage process was successfully simulated using the DEM implemented with the bonded particle model. The simulations reproduced the results of laboratory testing well and provided deeper insight into particle–particle bonding mechanisms. Cracks were initiated close to the centre of the pellet and, as the deformation progressed, they further developed in the direction of loading.


2012 ◽  
Vol 174-177 ◽  
pp. 82-90 ◽  
Author(s):  
Ju Nan Shen ◽  
Zhao Xing Xie ◽  
Fei Peng Xiao ◽  
Wen Zhong Fan

The objective of this study was to evaluate the effect of nano-sized hydrated lime on the moisture susceptibility of the hot mix asphalt (HMA) mixtures in terms of three methodologies to introduce into the mixtures. The experimental design for this study included the utilizations of one binder source (PG 64-22), three aggregate sources and three different methods introducing the lime. A total of 12 types of HMA mixtures and 72 specimens were fabricated and tested in this study. The performed properties include indirect tensile strength (ITS), tensile strength ratio (TSR), flow, and toughness. The results indicated that the nano-sized lime exhibits better moisture resistance. Introducing process of the nano-sized lime will produce difference in moisture susceptibility.


Author(s):  
James F. Hazzard ◽  
David S. Collins ◽  
William S. Pettitt ◽  
R. Paul Young

2017 ◽  
Author(s):  
Agnieszka Herman

Abstract. In this paper, a coupled sea ice–wave model is developed and used to analyze the variability of wave-induced stress and breaking in sea ice. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid "grains" floating on the water surface that can be connected to their neighbors by elastic "joints". The joints may break if instantaneous stresses acting on them exceed their strength. The wave part is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two parts are coupled with proper boundary conditions for pressure and velocity, exchanged at every time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.


Sign in / Sign up

Export Citation Format

Share Document