A new large strain approach for predicting tunnel deformation in strain-softening rock mass based on the generalized Zhang-Zhu strength criterion

Author(s):  
Chen Xu ◽  
Caichu Xia
2012 ◽  
Vol 170-173 ◽  
pp. 121-124
Author(s):  
Jian Xin Han ◽  
Xing Hua Tong ◽  
Lei Wang ◽  
Guo Fu Sun

In order to predict the stability of surrounding rock mass in geotechnical engineering, it is important to study the post-failure deformation property and residual strength of rock mass. Based on evolutional behavior of strength parameters, aiming at generalized Hoek-Brown strength criterion, selecting major principal strain as strain softening parameter, this paper presents the method of solving post-failure stress-strain curve . In numerical case, the effect of evolutional law of strength parameters , and to deformation and residual strength is discussed and we can draw the following conclusions: the greater the residual values of , are and the smaller the residual value of is, the post-failure strain softening curve falls more gently and the greater the residual strength is.


Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Hongfa Xu ◽  
Hansheng Geng ◽  
Feng Chen ◽  
Xiao Chen ◽  
Liangliang Qi

To estimate postgrouting rock mass strength growth is important for engineering design. In this paper, using self-developed indoor pressure-grouting devices, 19 groups of test cubic blocks were made of the different water cement ratio grouting into the broken rock of three kinds of particle sizes. The shear strength parameters of each group under different conditions were tested. Then this paper presents a quantitative calculation method for predicting the strength growth of grouted broken rock. Relational equations were developed to investigate the relationship between the growth rates of uniaxial compressive strength (UCS), absolute value of uniaxial tensile strength (AUTS), internal friction angle, and cohesion for post- to pregrouting broken rock based on Mohr-Coulomb strength criterion. From previous test data, the empirical equation between the growth rate of UCS and the ratio of the initial rock mass UCS to the grout concretion UCS has been determined. The equations of the growth rates of the internal friction coefficient and UCS for grouting broken rock with rock mass rating (RMR) and its increment have been established. The calculated results are consistent with the experimental results. These observations are important for engineered design of grouting reinforcement for broken rock mass.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
T. Yang ◽  
Q. S. Ye

Constitutive effect is extremely important for the research of the mechanical behavior of surrounding rock in hydraulic fracturing engineering. In this paper, based on the triaxial test results, a new elastic-peak plastic-softening-fracture constitutive model (EPSFM) is proposed by considering the plastic bearing behavior of the rock mass. Then, the closed-form solution of a circular opening is deduced with the nonassociated flow rule under the cavity expansion state. Meanwhile, the parameters of the load-bearing coefficient and brittles coefficient are introduced to describe the plastic bearing capacity and strain-softening degrees of rock masses. When the above two parameters take different values, the new solution of EPSFM can be transformed into a series of traditional solutions obtained based on the elastic-perfectly plastic model (EPM), elastic-brittle plastic model (EBM), elastic-strain-softening model (ESM), and elastic-peak plastic-brittle plastic model (EPBM). Therefore, it can be applied to a wider range of rock masses. In addition, the correctness of the solution is validated by comparing with the traditional solutions. The effect of constitutive relation and parameters on the mechanical response of rock mass is also discussed in detail. The research results show that the fracture zone radii of circular opening presents the characteristic of EBM > EPBM > ESM > EPSFM; otherwise, it is on the contrast for the critical hydraulic pressure at the softening-fracture zone interface; the postpeak failure radii show a linear decrease with the increase of load-bearing coefficients or a nonlinear increase with the increasing brittleness coefficient. This study indicates that the rock mass with a certain plastic bearing capacity is more difficult to be cracked by hydraulic fracturing; the higher the strain-softening degree of rock mass is, the easier it is to be cracked. From a practical point of view, it provides very important theoretical values for determining the fracture range of the borehole and providing a design value of the minimum pumping pressure in hydraulic fracturing engineering.


Author(s):  
Li Song ◽  
Hang Li ◽  
Hong Liao ◽  
Gui Zhao

2018 ◽  
Vol 8 (5) ◽  
pp. 841 ◽  
Author(s):  
Ali Ghorbani ◽  
Hadi Hasanzadehshooiili ◽  
Łukasz Sadowski

2021 ◽  
Author(s):  
Yang An ◽  
E-chuan Yan ◽  
Xing-ming Li ◽  
Shao-ping Huang

Abstract As a main method of petroleum strategic reserve in China, underground water-sealed storage cavern owns lots of outstanding advantages, such as low operating costs, high safety, and land resource conservation. Main caverns are important structure in underground project and the layout parameters and excavation scheme will have significant impact on overall project quality. The optimization method of main cavern layout and excavation scheme was put forward by a proposed large-scale underground water-sealed cavern project in China. First, based on field survey results, the Hoek-Brown strength criterion combined with rock mass quality Q classification system was used to estimate the equivalent mechanical parameters of rock mass. Second, the numerical experiments were carried out by relying on 3 Dimensions Distinct Element Code (3DEC). The discontinuous medium model was adopted, and displacements of key points, maximum displacement values and volume of the plastic zone were used as evaluation indicators. Axial direction, buried depth, spacing and excavation scheme of main caverns have been optimized. Results showed that axial direction should adopt NW325°, buried depth of cavern roof should locate at -100m, and distance between adjacent main caverns should be 1.5 times the span (36m). The “jump excavation” mode was recommended in construction. That is, the caverns on both sides should be excavated first, and the middle cavern should be excavated later. This mode could effectively reduce the interaction effect between caverns. This method has the characteristics of easy data acquisition and strong operability. It could be used to guide design and construction of similar projects . As a main method of petroleum strategic reserve in China, underground water-sealed storage cavern owns lots of outstanding advantages, such as low operating costs, high safety, and land resource conservation. Main caverns are important structure in underground project and the layout parameters and excavation scheme will have significant impact on overall project quality. The optimization method of main cavern layout and excavation scheme was put forward by a proposed large-scale underground water-sealed cavern project in China. First, based on field survey results, the Hoek-Brown strength criterion combined with rock mass quality Q classification system was used to estimate the equivalent mechanical parameters of rock mass. Second, the numerical experiments were carried out by relying on 3 Dimensions Distinct Element Code (3DEC). The discontinuous medium model was adopted, and displacements of key points, maximum displacement values and volume of the plastic zone were used as evaluation indicators. Axial direction, buried depth, spacing and excavation scheme of main caverns have been optimized. Results showed that axial direction should adopt NW325°, buried depth of cavern roof should locate at -100m, and distance between adjacent main caverns should be 1.5 times the span (36m). The “jump excavation” mode was recommended in construction. That is, the caverns on both sides should be excavated first, and the middle cavern should be excavated later. This mode could effectively reduce the interaction effect between caverns. This method has the characteristics of easy data acquisition and strong operability. It could be used to guide design and construction of similar projects .


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Lina Ran ◽  
Huabin Zhang ◽  
Qingqing Zhang

A semianalytical solution of stress and displacement in the strain-softening and plastic flow zones of a salt cavern is presented. The solution is derived by adopting the large deformation theory, considering the nonlinear Hoek–Brown (H-B) strength criterion. The Romberg method is used to carry out numerical calculation, and then, the large deformation law of displacement is analyzed. The results are compared with those obtained by former numerical methods, and the solutions are validated. The results indicate that the displacement of the plastic zone decreases with the increase in distance away from the salt cavern. Similarly, it decreases with an increase in the geological strength index or running pressure, with the running pressure having a more significant effect on the displacement. It increases with the dilation angle, and the impact degree gradually increases. Compared with the softening parameter, h, of the plastic zone, the flow parameter, f, has little impact on the displacement. The displacement of the plastic zone obviously increased when considering the strain-softening of salt rock. When considering the shear dilation and softening behaviors of salt rock, the analytical solution obtained by employing the experiential regression Hoek–Brown (H-B) criterion, which considers many factors such as the structural characteristics of the salt formation and the rock mass quality, is safer and closer to the actual situation. This study can provide reference for many applications, including but not confined to analyzing the deformation of the surrounding rock of an underground salt cavern storage facility during construction.


Sign in / Sign up

Export Citation Format

Share Document