Modeling study of cumulative damage effects and safety criterion of surrounding rock under multiple full-face blasting of a large cross-section tunnel

Author(s):  
Ling Ji ◽  
Chuanbo Zhou ◽  
Shiwei Lu ◽  
Nan Jiang ◽  
Haibo Li
2011 ◽  
Vol 90-93 ◽  
pp. 2282-2285
Author(s):  
Cheng Bing Wang ◽  
He Hua Zhu ◽  
Hua Lao Wang

The failure conditions of tunnel surrounding rock under different cross section after full face excavation were studied through a number of model tests. The simulation of unsupported tunnel failure process under gravitational stress is carried out successfully in the tests. The test results show that failure of surrounding rock initiates from the upper part of the tunnel and develops upward progressively. Failure form of tunnel is different under different cross section type. Comparing with two-lane tunnel, the surrounding rock of three-lane tunnel keeps shorter stabilization, failure develops to the ground surface more rapidly, the stress changing amplitude of those beside tunnel is larger, and the rock mass on the top of the tunnel slides downward more clearly.


2018 ◽  
Vol 38 ◽  
pp. 03041 ◽  
Author(s):  
Bo Wu ◽  
Wei Huang ◽  
Yong Bo Zhao

In the extra-large cross-section urban subway underground station projects, the key problem is to choose the appropriate excavation method and grasp the mechanical behavior of the surrounding rock after excavation. The double side drift method is widely used in the urban subway underground station construction with extra-large cross-section in China. This paper presents the deformation characteristics of the extra-large cross-section tunnel of urban subway and a comparison with the numerical simulation results. In the city subway underground excavation of large section station, the mechanical behavior of surrounding rock change and its influence on the surrounding area mainly depend on the selection of construction methods. The convergent deformation of tunnel cavern, the subsidence of the surface and the force failure of the surrounding rock associated the construction approaches are demonstrated. This study provides a more in-depth demonstration of the way to optimize the excavation method of the extra-large cross-section tunnel to achieve the purpose of controlling the deformation of the surface and surrounding rock.


2021 ◽  
Author(s):  
Jie Mei ◽  
Wanzhi Zhang ◽  
Bangshu Xu ◽  
Yongxue Zhu ◽  
Bingkun Wang

Abstract The drilling and blasting method is still the main method in mountain tunnel excavation. For large cross-section tunnel in horizontal layered rock mass, tunnel blasting often causes serious overbreak and underbreak. In this study, blasting excavation tests of tunnel upper face were conducted and failure mechanisms of surrounding rocks with weak beddings and joints were analyzed based on the Panlongshan tunnel. Then, the blasthole pattern, the cut mode, a variety of peripheral holes, the charge structure and the maximum single-hole charge were optimized. Compared with the failure characteristics, overbreak and underbreak, and deformations of surrounding rocks before and after optimization, the latter was better in tunnel contour forming and surrounding rock stability. The results show that after optimization, the large-area separation of vault rock mass is solved, the step-like overbreak of spandrel rock mass is reduced and the large-size rock blocks and underbreak are avoided. The maximum linear overbreak of vault, spandrel, and haunch surrounding rocks is decreased by 42.3%, 53.7% and 45.1%, respectively. The underbreak at the bottom of the upper face is reduced from -111.5 to - 16.5 cm. The average overbreak area is decreased by 61.1%. In addition, the displacements after optimization finally converge to the smaller values. The arch crown settlement and the horizontal convergence of haunch are reduced by about 21.6% and 18.3%, respectively. Furthermore, from the completion of blasting excavation to the stabilization of surrounding rock, it takes less time by using the optimized blasting scheme.


2011 ◽  
Vol 90-93 ◽  
pp. 1834-1839
Author(s):  
Ri Bin Wang ◽  
Xin Ni Lin ◽  
Hua Ping Shao ◽  
Jun Sheng Yang ◽  
Yuan Liang Huang

CRD method and three-bench method with temporary invert, which are applied to shallow buried and large cross-section tunnel engineering, are discussed, and simulated by FLAC2D so as to study the variation feature of displacement field, surrounding rock disturbance and internal supporting force caused by the excavation. According to the simulation results, it is proved that CRD method, with higher safety, can control tunnel collapse effectively while three-bench method quickens construction schedule. Therefore, it is recommended that the two methods are used for excavating tunnels alternately if possible so that it will increase economic benefit.


2011 ◽  
Vol 94-96 ◽  
pp. 1159-1165 ◽  
Author(s):  
Chong Bang Xu ◽  
Cai Chu Xia ◽  
Hua Lao Wang

Increasing numbers of tunnels adopt super large sections due to the advance of design and construction technology, but the calculation method for the loose loads of such tunnels still follows the traditional method for tunnels constructed by the method of whole face excavation. The calculated loads using such method are always lager than their actual values of super large sections tunnels, and as a result the supports for such tunnels are too conservative which lead to unnecessary construction cost. As said, a new calculation method for the loose loads of multi-arch and extra large cross section tunnels (MELCST) is proposed in this paper considering the characteristics of construction for such tunnels. The method accounts for the influences caused by the multi-step construction procedure and temporary support on tunnels. Compared with old methods, this method is more practical and close to field situation, which provides a new idea for calculating surrounding rock loose loads in MELCST. This new method is demonstrated using Luohanshan tunnel of airport-highway in Fuzhou city, China.


Sign in / Sign up

Export Citation Format

Share Document