scholarly journals Fracture of three-dimensional lattices manufactured by selective laser melting

2019 ◽  
Vol 180-181 ◽  
pp. 147-159 ◽  
Author(s):  
Huaiyuan Gu ◽  
Sheng Li ◽  
Martyn Pavier ◽  
Moataz M. Attallah ◽  
Charilaos Paraskevoulakos ◽  
...  
2020 ◽  
Vol 264 ◽  
pp. 127377 ◽  
Author(s):  
Zhenlu Zhou ◽  
Zhen Tan ◽  
Dingyong He ◽  
Zheng Zhou ◽  
Li Cui ◽  
...  

2015 ◽  
Vol 60 (2) ◽  
pp. 1065-1070 ◽  
Author(s):  
L.A. Dobrzański ◽  
A.D. Dobrzańska-Danikiewicz ◽  
P. Malara ◽  
T.G. Gaweł ◽  
L.B. Dobrzański ◽  
...  

AbstractThe aim of the research, the results of which are presented in the paper, is to fabricate, by Selective Laser Melting (SLM), a metallic scaffold with Ti6Al4V powder based on a virtual model corresponding to the actual loss of a patient’s craniofacial bone. A plaster cast was made for a patient with a palate recess, and the cast was then scanned with a 3D scanner to create a virtual 3D model of a palate recess, according to which a 3D model of a solid implant was created using specialist software. The virtual 3D solid implant model was converted into a 3D porous implant model after designing an individual shape of the unit cell conditioning the size and three-dimensional shape of the scaffold pores by multiplication of unit cells. The data concerning a virtual 3D porous implant model was transferred into a selective laser melting (SLM) device and a metallic scaffold was produced from Ti6Al4V powder with this machine, which was subjected to surface treatment by chemical etching. An object with certain initially adopted assumptions, i.e. shape and geometric dimensions, was finally achieved, which perfectly matches the patient bone recesses. The scaffold created was subjected to micro-and spectroscopic examinations.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Izabela Zglobicka ◽  
Agnieszka Chmielewska ◽  
Emre Topal ◽  
Kristina Kutukova ◽  
Jürgen Gluch ◽  
...  

AbstractDiatom frustules, with their diverse three-dimensional regular silica structures and nano- to micrometer dimensions, represent perfect model systems for biomimetic fabrication of materials and devices. The structure of a frustule of the diatom Didymosphenia geminata was nondestructively visualized using nano X-ray computed tomography (XCT) and transferred into a CAD file for the first time. Subsequently, this CAD file was used as the input for an engineered object, which was manufactured by applying an additive manufacturing technique (3D Selective Laser Melting, SLM) and using titanium powder. The self-similarity of the natural and the engineered objects was verified using nano and micro XCT. The biomimetic approach described in this paper is a proof-of-concept for future developments in the scaling-up of manufacturing based on special properties of microorganisms.


2012 ◽  
Vol 6 (5) ◽  
pp. 597-603 ◽  
Author(s):  
Takayuki Nakamoto ◽  
◽  
Nobuhiko Shirakawa ◽  
Kyosuke Kishida ◽  
Katsushi Tanaka ◽  
...  

There has been a growing interest and practical importance in producing implants such as artificial joints, bone fixators and spinal fixators with titanium. In order to achieve good bone/implant fixation while avoiding the problem of bone absorption, it is mandatory to reduce the Young’s modulus of titanium while keeping the high strength so as to achieve the compatibility in these mechanical properties with human cortical bone. We have tried to fabricate porous titanium with directional pores by the use of the method based on Selective Laser Melting (SLM), in which complex three-dimensional parts even containing designed shapes of pores can be produced by sintering successive thin layers of metal powder with a laser beam. Here we show that porous titanium with directional pores aligned in the longitudinal direction of the ingot is successfully produced through the use of the SLM process and that high strength and low modulus comparable to those of human bone are simultaneously achieved when these properties are measured in the longitudinal direction of the ingot.


2019 ◽  
Vol 9 (14) ◽  
pp. 2905 ◽  
Author(s):  
Jesús Esarte ◽  
Jesús M. Blanco ◽  
Angela Bernardini ◽  
Ramón Sancibrián

The primary wick in a loop heat pipe device is a key component that is central to the operation of the device. Both high permeability and capillary pumping capacity, two properties highly dependent on wick structure, are strongly desirable for a satisfactory thermal performance. In this paper, selective laser melting (SLM), a three-dimensional (3D) printing technology, is used to create a primary wick for an 80 W heat transfer application. The permeability and capillarity values of this wick, experimentally measured, are compared with those built with the most widely used technologies nowadays, such as powder sintering and meshes. In this study, the SLM scaffold is shown to satisfy the minimum values required by the application in terms of capillarity and permeability: 0.031 mm/s and 4 × 10−12 m2, respectively. Our comparative study revealed that the wick produced with the SLM technology presented higher values of permeability, by two orders of magnitude, and slightly higher capillary figures than those corresponding to powder sintering for such application. However, it had capillary values well below those of a stainless-steel mesh. The hydraulic behavior of the SLM wick was better than that of the sintered copper powder, because it not only met the above-mentioned specifications, but it also improved its performance.


2018 ◽  
Vol 941 ◽  
pp. 1437-1442
Author(s):  
Takashi Maeshima ◽  
Keiichiro Oh-Ishi ◽  
Hiroaki Kadoura ◽  
Masashi Hara

Multi-scale microstructure observation and three dimensional finite element thermal analysis of AlSi10Mg alloy fabricated by selective laser melting (SLM) process were demonstrated in order to understand the microstructure formation process during SLM fabrication. The unique hierarchically microstructures were observed: (1) the “fish scale” microstructure corresponding to a part of molten pool consists of columnar and equiaxed grains and (2) these grains contain a substructure of α-Al surrounded by Si particles. It is revealed that a supersaturated Si concentration due to the predicted rapid cooling rate on the order of 106 oC/s. In addition, the base temperature during the fabrication increases gradually with some peak temperature of each laser path as the laser scan has proceeded on a powder layer. Although the thermal changes cause no melting of the AlSi10Mg except directly fused region by selective laser so called molten pool, those are capable of causing precipitation and/or clustering.


Sign in / Sign up

Export Citation Format

Share Document