Structural optimization of a microjet based cooling system for high power LEDs

2008 ◽  
Vol 47 (8) ◽  
pp. 1086-1095 ◽  
Author(s):  
Sheng Liu ◽  
Jianghui Yang ◽  
Zhiyin Gan ◽  
Xiaobing Luo
2015 ◽  
Vol 17 (3) ◽  
pp. 127 ◽  
Author(s):  
Endiah Puji Hastuti ◽  
Muhammad Subekti ◽  
Sukmanto Dibyo ◽  
M. Darwis Isnaini

ABSTRAK OPTIMASI DESAIN TERMOHIDROLIKA TERAS DAN SISTEM PENDINGIN REAKTOR RISET INOVATIF DAYA TINGGI. Implementasi reaktor inovasi telah diterapkan pada berbagai reaktor riset baru yang saat ini sedang dibangun.  Pada saat ini BATAN sedang merancang desain konseptual reaktor riset daya tinggi yang telah masuk pada tahap optimasi desain. Spesifikasi desain konseptual reaktor riset inovatif adalah reaktor tipe kolam berpendingin air dan reflektor D2O. Teras reaktor memiliki kisi 5x5 dengan 16 bahan bakar dan 4 batang kendali. Teras reaktor berada di dalam tabung berisi D2O yang berfungsi sebagai posisi iradiasi. Daya reaktor 50 MW didesain untuk membangkitkan fluks neutron termal sebesar 5x1014 n/cm2s. Teras reaktor berbentuk kompak dan menggunakan bahan bakar U9Mo-Al dengan tingkat muat uranium 7-9 gU/cm3. Desain termohidrolika yang mencakup pemodelan, perhitungan dan analisis kecukupan pendingin dibuat sinergi dengan desain fisika teras agar keselamatan reaktor terjamin. Makalah ini bertujuan menyampaikan hasil analisis perhitungan termohidrolika teras dan sistem reaktor riset inovatif pada kondisi tunak. Analisis dilakukan menggunakan program perhitungan yang telah tervalidasi, masing-masing adalah Caudvap, PARET-ANL, Fluent dan ChemCad 6.4.1. Hasil perhitungan menunjukkan bahwa pembangkitan panas yang tinggi dapat dipindahkan tanpa menyebabkan pendidihan dengan menerapkan desain teras reaktor bertekanan, di samping itu desain awal komponen utama sistem pembuangan panas yang terintegrasi telah dilakukan, sehingga konseptual desain termohidrolika RRI-50 dapat diselesaikan. Kata kunci : reaktor riset inovatif, Caudvap, PARET-ANL, Fluent, ChemCad 6.4.1.  ABSTRACT THERMALHYDRAULIC DESIGN AND COOLING SYSTEM OPTIMIZATION OF THE HIGH POWER INOVATIVE RESEARCH REACTOR. Reactor innovation has been implemented in a variety of new research reactors that currently are being built. At this time BATAN is designing a conceptual design of the high power research reactor which has entered the stage of design optimization. The conceptual design specifications of the innovative research reactor is a pool type reactor, water-cooled and reflected by D2O. The reactor core has a 5 x 5 grid with 16 fuels and 4 control rods, which is inserted into a tube containing D2O as an irradiation position. Reactor power of 50 MW is designed to generate thermal neutron flux of 5x1014 n/cm2s. The compact core reactor is using U9Mo-Al fuel with uranium loading of 7-9 gU/cm3. Thermal hydraulic design includes modeling, calculation and analysis of the adequacy of coolant created synergy with the physical design of reactor safety. This paper aims to deliver the results of thermal hydraulic calculation and system design analysis at steady state condition. The analysis was done using various calculation programs that have been validated, i.e. Caudvap, PARET-ANL, Fluent and ChemCad 6.4.1. The calculation results show that the heat generation can be transfered without causing a two phase flow boiling by applying pressurized reactor core design, while the main components of initial design system with an integrated heat dissipation has been done, to complete the conceptual design of the RRI-50 thermalhydraulics. Keywords : inovative research reactor, Caudvap, PARET-ANL, Fluent, ChemCad 6.4.1.


2019 ◽  
Vol 27 (6) ◽  
pp. 1309-1317
Author(s):  
徐建根 XU Jian-gen ◽  
崔锦江 CUI Jin-jiang ◽  
董宁宁 DONG Ning-ning ◽  
曹 莉 CAO Li

2020 ◽  
Vol 10 (5) ◽  
pp. 1660
Author(s):  
Aihua Chu ◽  
Yinnan Yuan ◽  
Jianxin Zhu ◽  
Xiao Lu ◽  
Chenquan Zhou

High power cylindrical Ni-MH battery cells have a heavy heat load because of their high discharge rate and large equivalent internal resistance. This heavy heat load, together with an imbalanced flow in parallel liquid cooling systems, can lead to variances in the temperature of each cell in the entire battery pack, thereby reducing the life cycle of the battery pack. In this paper, a parallel-series combined liquid cooling system for a 288V Ni-MH battery pack was designed, and several parameters that influence the flow balance of the system by heat transfer and fluid dynamics were calculated. Then, a thermal-fluid simulation was executed with different parameters using StarCCM+ software, and the simulation results were validated by a battery pack temperature experiment on a bench and in a vehicle. The results indicate that the cell’s temperature and temperature differences can be kept within an ideal range. We also determined that within the battery power requirements and structural spacing limits, the total flow rate of the cooling liquid, the cross-sectional area ratio of the main pipe to the branch pipes, and the number of internal supporting walls in each branch pipe need to be large enough to minimize the cell’s maximum temperature and temperature differences.


1981 ◽  
Vol 53 (9) ◽  
pp. 1545-1546 ◽  
Author(s):  
S. W. Edwards ◽  
J. F. Schetzina
Keyword(s):  

2008 ◽  
Vol 600-603 ◽  
pp. 1223-1226 ◽  
Author(s):  
Shin Ichi Kinouchi ◽  
Hiroshi Nakatake ◽  
T. Kitamura ◽  
S. Azuma ◽  
S. Tominaga ◽  
...  

A compact SiC converter having power densities about 9 W/cm3 is designed and fabricated. It is confirmed that the converter operates in a thermally permissive range. The power loss of the module of the converter measured under motor operations is less than 50% of the similar-rating Si module loss. The shrink of the effective volume of DC-link capacitor is necessary to achieve the high power-density SiC converter, in addition to the decrease of the cooling system volume due to the loss reduction caused by SiC devices.


2017 ◽  
Vol 123 ◽  
pp. 103-110 ◽  
Author(s):  
Tomasz Muszynski ◽  
Dariusz Mikielewicz

Sign in / Sign up

Export Citation Format

Share Document