An optimum design problem in estimating the shape of perforated pins and splitters in a plate-pin-fin heat sink

2021 ◽  
Vol 170 ◽  
pp. 107096
Author(s):  
Cheng-Hung Huang ◽  
Yuan-Rei Huang
2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Siwadol Kanyakam ◽  
Sujin Bureerat

This paper presents the use of multiobjective evolutionary algorithms for the optimal geometrical design of a pin-fin heat sink. The multiobjective design problem is posed to minimize two conflicting objectives: the junction temperature and the fan pumping power of the heat sink. The design variables are mixed integer/continuous. The encoding/decoding process for this mixed integer/continuous design variables is detailed. The multiobjective optimizers employed to solve the design problem are population-based incremental learning, strength Pareto evolutionary algorithm, particles swarm optimization, and archived multiobjective simulated annealing. The approximate Pareto fronts obtained from using the various optimizers are compared based upon the hypervolume and generational distance indicators. From the results, population-based incremental learning (PBIL) outperforms the others. The new design approach is said to be superior to a classical design approach. It is also illustrated that the proposed multiobjective design process leads to better design compared to the current commercial pin-fin heat sinks.


Author(s):  
Zhuo Cui

This paper presents the effects of heat dissipation performance of pin fins with different heat sink structures. The heat dissipation performance of two types of pin fin arrays heat sink are compared through measuring their heat resistance and the average Nusselt number in different cooling water flow. The temperature of cpu chip is monitored to determine the temperature is in the normal range of working temperature. The cooling water flow is in the range of 0.02L/s to 0.15L/s. It’s found that the increase of pin fins in the corner region effectively reduce the temperature of heat sink and cpu chip. The new type of pin fin arrays increase convection heat transfer coefficient and reduce heat resistance of heat sink.


2021 ◽  
Vol 170 ◽  
pp. 107109
Author(s):  
Mohanad A. Alfellag ◽  
Hamdi E. Ahmed ◽  
Mohammed Gh. Jehad ◽  
Marwan Hameed

Sign in / Sign up

Export Citation Format

Share Document