Evaluating the efficiency of pin–fin micro-heat sink considering different shapes of nanoparticle based on exergy analysis

Author(s):  
F. M. Allehiany ◽  
Emad E. Mahmoud ◽  
S. Berrouk ◽  
Vakkar Ali ◽  
Muhammad Ibrahim
2014 ◽  
Vol 1082 ◽  
pp. 332-335
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Hussin Kamarudin ◽  
Muammar Mohamad Isa ◽  
Gan Meng Kuan

In this paper, the heat distribution for single chip high power LED package attached with varied heat sink fin shapes were analyzed through simulation. The main focus of this study was to scrutinize the fluctuation of junction temperature with different shapes of heat sink fin designs. The simulation was done using Ansys version 11. The single chip LED was loaded with input power of 0.5 W and 1 W . Simulation was done at ambient temperature of 25°C under three convection coefficient of 5, 10 and 15 W/m2.oC respectively. The obtained results showed that the LED package with pyramid pin fin heat sink has demonstrated a better thermal performance compared to the LED package with cylindrical pin fin heat sink.


Author(s):  
Alok Kumar ◽  
Dr. Ajay Singh ◽  
Prof. Ashish Verma

This paper introduces a brief review about the way of heat extraction enhancement from heat sink using fins of different types and different shapes and also with different shape of perforation. Extended surfaces from the base plate or heat sink is nothing but they are FINS. There are various types of fin exits. They are Rectangular, Square, Annular, Elliptical, Cylindrical or Pin fin which is utilized with different geometrical combinations. To achieve maximum temperature droop from the base surface or heat sink by using fins numerous trials are completed or being carried out for designing optimized Fin. The optimization of Fin can be achieved by increasing surface contact area with the atmospheric air. In these days there are numbers of experiment is done on fins like Solid fin, Porous fins and Solid fins with perforation, has also been brought off. The various design modifications which are implemented and studied analytically and experimentally by the researchers using ANSYS Work bench is been discussed in this review paper.


2020 ◽  
Vol 27 (6) ◽  
pp. 491-503
Author(s):  
Gagan V. Kewalramani ◽  
Gaurav Hedau ◽  
Sandip Kumar Saha ◽  
Amit Agrawal

Author(s):  
Zhuo Cui

This paper presents the effects of heat dissipation performance of pin fins with different heat sink structures. The heat dissipation performance of two types of pin fin arrays heat sink are compared through measuring their heat resistance and the average Nusselt number in different cooling water flow. The temperature of cpu chip is monitored to determine the temperature is in the normal range of working temperature. The cooling water flow is in the range of 0.02L/s to 0.15L/s. It’s found that the increase of pin fins in the corner region effectively reduce the temperature of heat sink and cpu chip. The new type of pin fin arrays increase convection heat transfer coefficient and reduce heat resistance of heat sink.


Sign in / Sign up

Export Citation Format

Share Document