An Experimental and Theoretical Investigation into the Thermal Performance Characteristics of a Staggered Vertical Pin Fin Array Heat Sink with Assisting Mixed Convection in External and In-Duct Flow Configurations

2006 ◽  
Vol 19 (2) ◽  
pp. 129-148 ◽  
Author(s):  
C. J. Kobus ◽  
T. Oshio
Author(s):  
H. Y. Zhang ◽  
Xiao Yan ◽  
W. H. Zhu ◽  
Leon Lin

2.5-D package with through silicon vias (TSVs) on interposer has been envisioned as the most viable way in heterogeneous integration. In this work, several design approaches are considered in the thermal analysis and enhancements of a 2.5-D package with multi chips on through silicon interposer (TSI), which include overmolding materials, metal slug, lid attachment, pin fin heat sink and fan-driven heat sink cooling. The analysis models consist of two dummy flip chips on a silicon interposer to represent the logic die and memory die, respectively. Package submodels, especially the TSV ones, are analyzed with good modeling accuracy. Package thermal modeling indicates that the thermal conductivity of the epoxy overmolding has minimal effect on the thermal performance of copper slug package. Lid attachment further enhances the thermal performance through peripheral substrate attachment. Both designs largely rely on thermally conductive PCB (4L) to maximize power dissipation. Pin-fin heat sink, made of aluminum, can be mounted on the package top to further minimize thermal resistance and extend the power dissipation beyond 10W. For high power application, fan cooled heat sink is used to reduce excessive heat. Copper based aluminum heat sink can remove the heat of 120W from the bare-die package. Self heating due to high current density through the TSV is analyzed. The proposed analytical expression gives good prediction on the local TSV hot spot. It is demonstrated that a distributed TSV network design provides lower temperature rise, which shall have lower risk of failures and is preferred in practice.


Author(s):  
Sulaman Pashah ◽  
Abul Fazal M. Arif

Heat sinks are used in modern electronic packaging system to enhance and sustain system thermal performance by dissipating heat away from IC components. Pin fins are commonly used in heat sink applications. Conventional metallic pins fins are efficient in low Biot number range whereas high thermal performance can be achieved in high Biot number regions with orthotropic composite pin fins due to their adjustable thermal properties. However, several challenges related to performance as well as manufacturing need to be addressed before they can be successfully implemented in a heat sink design. A heat sink assembly with metallic base plate and polymer composite pin fins is a solution to address manufacturing constraints. During the service life of an electronic packaging, the heat sink assembly is subjected to power cycles. Cyclic thermal stresses will be important at the pin-fin and base-plate interface due to thermal mismatch. The cyclic nature of stresses can lead to fatigue failure that will affect the reliability of the heat sink and electronic packaging. A finite element model of the heat sink is used to investigate the thermal stress cyclic effect on thermo-mechanical reliability performance. The aim is to assess the reliability performance of the epoxy bond at the polymer composite pin fins and metallic base plate interface in a heat-sink assembly.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

In this paper the authors are studying the effect of introducing S-shaped pin-fin structures in a micro pin-fin heat sink to enhance the overall thermal performance of the heat sinks. For the purpose of evaluating the overall thermal performance of the heat sink a figure of merit (FOM) term comprising both thermal resistance and pumping power is introduced in this paper. An optimization study of the overall performance based on the pitch distance of the pin-fin structures both in the axial and the transverse direction, and based on the curvature at the ends of S-shape fins is also carried out in this paper. The value of the Reynolds number of liquid flow at the entrance of the heat sink is kept constant for the optimization purpose and the study is carried out over a range of Reynolds number from 50 to 500. All the optimization processes are carried out using computational fluid dynamics software CoventorWARE™. The models generated for the study consists of two sections, the substrate (silicon) and the fluid (water at 278K). The pin fins are 150 micrometers tall and the total structure is 500 micrometer thick and a uniform heat flux of 500KW is applied to the base of the model. The non dimensional thermal resistance and nondimensional pumping power calculated from the results is used in determining the FOM term. The study proved the superiority of the S-shaped pin-fin heat sinks over the conventional pin-fin heat sinks in terms of both FOM and flow distribution. S-shaped pin-fins with pointed tips provided the best performance compared to pin-fins with straight and circular tips.


Author(s):  
Lianfeng Yang ◽  
Yigang Luan ◽  
Shi Bu ◽  
Haiou Sun ◽  
Franco Magagnato

In modern gas turbines, the trailing edge of turbine blades must be cooled by compact heat transfer structures. The basic problems in the design of cooling ducts include enhancing heat transfer, reducing pressure loss and obtaining uniform temperature distribution. The purpose is to improve energy efficiency and guarantee the engine lifespan. In this work, both experiment and numerical simulation are employed to study pressure drop and heat transfer of various kinds of cooling configurations. Pin fin array, matrix and hybrid structures are investigated in a comparative study. Thermochromic liquid crystal technique is applied to obtain heat transfer distribution on the channel surface. The results show that matrix creates much stronger heat transfer than pin fin array with increased pressure loss penalty. Performances of matrix structures are quite different due to the configurations (dense or sparse). Hybrid structures are always worse than the baseline matrix in terms of average thermal performance, due to the higher pressure loss, however, heat transfer can be improved. The performance of hybrid structure depends on the arrangement and diameter of the pin fins. Pin fins in central area provide not only larger pressure loss but also stronger heat transfer than pin fins near the bend region. Cases with larger diameter result in the thermal performance degradation. Compared with sparse matrix, the hybrid structures can compensate for the lower heat transfer enhancement. As for the dense hybrid structures, the average heat transfer capacity can be improved with reasonable pin fin arrangement.


Sign in / Sign up

Export Citation Format

Share Document